micropython/ports/unix/mpthreadport.c

356 wiersze
11 KiB
C

/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2016 Damien P. George on behalf of Pycom Ltd
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <stdio.h>
#include <stdlib.h>
#include <errno.h>
#include "py/runtime.h"
#include "py/mpthread.h"
#include "py/gc.h"
#if MICROPY_PY_THREAD
#include <fcntl.h>
#include <signal.h>
#include <sched.h>
#include <semaphore.h>
#include "shared/runtime/gchelper.h"
// Some platforms don't have SIGRTMIN but if we do have it, use it to avoid
// potential conflict with other uses of the more commonly used SIGUSR1.
#ifdef SIGRTMIN
#define MP_THREAD_GC_SIGNAL (SIGRTMIN + 5)
#else
#define MP_THREAD_GC_SIGNAL (SIGUSR1)
#endif
// This value seems to be about right for both 32-bit and 64-bit builds.
#define THREAD_STACK_OVERFLOW_MARGIN (8192)
// this structure forms a linked list, one node per active thread
typedef struct _mp_thread_t {
pthread_t id; // system id of thread
int ready; // whether the thread is ready and running
void *arg; // thread Python args, a GC root pointer
struct _mp_thread_t *next;
} mp_thread_t;
STATIC pthread_key_t tls_key;
// The mutex is used for any code in this port that needs to be thread safe.
// Specifically for thread management, access to the linked list is one example.
// But also, e.g. scheduler state.
STATIC pthread_mutex_t thread_mutex;
STATIC mp_thread_t *thread;
// this is used to synchronise the signal handler of the thread
// it's needed because we can't use any pthread calls in a signal handler
#if defined(__APPLE__)
STATIC char thread_signal_done_name[25];
STATIC sem_t *thread_signal_done_p;
#else
STATIC sem_t thread_signal_done;
#endif
void mp_thread_unix_begin_atomic_section(void) {
pthread_mutex_lock(&thread_mutex);
}
void mp_thread_unix_end_atomic_section(void) {
pthread_mutex_unlock(&thread_mutex);
}
// this signal handler is used to scan the regs and stack of a thread
STATIC void mp_thread_gc(int signo, siginfo_t *info, void *context) {
(void)info; // unused
(void)context; // unused
if (signo == MP_THREAD_GC_SIGNAL) {
gc_helper_collect_regs_and_stack();
// We have access to the context (regs, stack) of the thread but it seems
// that we don't need the extra information, enough is captured by the
// gc_collect_regs_and_stack function above
// gc_collect_root((void**)context, sizeof(ucontext_t) / sizeof(uintptr_t));
#if MICROPY_ENABLE_PYSTACK
void **ptrs = (void **)(void *)MP_STATE_THREAD(pystack_start);
gc_collect_root(ptrs, (MP_STATE_THREAD(pystack_cur) - MP_STATE_THREAD(pystack_start)) / sizeof(void *));
#endif
#if defined(__APPLE__)
sem_post(thread_signal_done_p);
#else
sem_post(&thread_signal_done);
#endif
}
}
void mp_thread_init(void) {
pthread_key_create(&tls_key, NULL);
pthread_setspecific(tls_key, &mp_state_ctx.thread);
// Needs to be a recursive mutex to emulate the behavior of
// BEGIN_ATOMIC_SECTION on bare metal.
pthread_mutexattr_t thread_mutex_attr;
pthread_mutexattr_init(&thread_mutex_attr);
pthread_mutexattr_settype(&thread_mutex_attr, PTHREAD_MUTEX_RECURSIVE);
pthread_mutex_init(&thread_mutex, &thread_mutex_attr);
// create first entry in linked list of all threads
thread = malloc(sizeof(mp_thread_t));
thread->id = pthread_self();
thread->ready = 1;
thread->arg = NULL;
thread->next = NULL;
#if defined(__APPLE__)
snprintf(thread_signal_done_name, sizeof(thread_signal_done_name), "micropython_sem_%ld", (long)thread->id);
thread_signal_done_p = sem_open(thread_signal_done_name, O_CREAT | O_EXCL, 0666, 0);
#else
sem_init(&thread_signal_done, 0, 0);
#endif
// enable signal handler for garbage collection
struct sigaction sa;
sa.sa_flags = SA_SIGINFO;
sa.sa_sigaction = mp_thread_gc;
sigemptyset(&sa.sa_mask);
sigaction(MP_THREAD_GC_SIGNAL, &sa, NULL);
}
void mp_thread_deinit(void) {
mp_thread_unix_begin_atomic_section();
while (thread->next != NULL) {
mp_thread_t *th = thread;
thread = thread->next;
pthread_cancel(th->id);
free(th);
}
mp_thread_unix_end_atomic_section();
#if defined(__APPLE__)
sem_close(thread_signal_done_p);
sem_unlink(thread_signal_done_name);
#endif
assert(thread->id == pthread_self());
free(thread);
}
// This function scans all pointers that are external to the current thread.
// It does this by signalling all other threads and getting them to scan their
// own registers and stack. Note that there may still be some edge cases left
// with race conditions and root-pointer scanning: a given thread may manipulate
// the global root pointers (in mp_state_ctx) while another thread is doing a
// garbage collection and tracing these pointers.
void mp_thread_gc_others(void) {
mp_thread_unix_begin_atomic_section();
for (mp_thread_t *th = thread; th != NULL; th = th->next) {
gc_collect_root(&th->arg, 1);
if (th->id == pthread_self()) {
continue;
}
if (!th->ready) {
continue;
}
pthread_kill(th->id, MP_THREAD_GC_SIGNAL);
#if defined(__APPLE__)
sem_wait(thread_signal_done_p);
#else
sem_wait(&thread_signal_done);
#endif
}
mp_thread_unix_end_atomic_section();
}
mp_state_thread_t *mp_thread_get_state(void) {
return (mp_state_thread_t *)pthread_getspecific(tls_key);
}
void mp_thread_set_state(mp_state_thread_t *state) {
pthread_setspecific(tls_key, state);
}
void mp_thread_start(void) {
// enable realtime priority if `-X realtime` command line parameter was set
#if defined(__APPLE__)
if (mp_thread_is_realtime_enabled) {
mp_thread_set_realtime();
}
#endif
pthread_setcanceltype(PTHREAD_CANCEL_ASYNCHRONOUS, NULL);
mp_thread_unix_begin_atomic_section();
for (mp_thread_t *th = thread; th != NULL; th = th->next) {
if (th->id == pthread_self()) {
th->ready = 1;
break;
}
}
mp_thread_unix_end_atomic_section();
}
void mp_thread_create(void *(*entry)(void *), void *arg, size_t *stack_size) {
// default stack size is 8k machine-words
if (*stack_size == 0) {
*stack_size = 8192 * sizeof(void *);
}
// minimum stack size is set by pthreads
if (*stack_size < PTHREAD_STACK_MIN) {
*stack_size = PTHREAD_STACK_MIN;
}
// ensure there is enough stack to include a stack-overflow margin
if (*stack_size < 2 * THREAD_STACK_OVERFLOW_MARGIN) {
*stack_size = 2 * THREAD_STACK_OVERFLOW_MARGIN;
}
// set thread attributes
pthread_attr_t attr;
int ret = pthread_attr_init(&attr);
if (ret != 0) {
goto er;
}
ret = pthread_attr_setstacksize(&attr, *stack_size);
if (ret != 0) {
goto er;
}
ret = pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
if (ret != 0) {
goto er;
}
mp_thread_unix_begin_atomic_section();
// create thread
pthread_t id;
ret = pthread_create(&id, &attr, entry, arg);
if (ret != 0) {
mp_thread_unix_end_atomic_section();
goto er;
}
// adjust stack_size to provide room to recover from hitting the limit
*stack_size -= THREAD_STACK_OVERFLOW_MARGIN;
// add thread to linked list of all threads
mp_thread_t *th = malloc(sizeof(mp_thread_t));
th->id = id;
th->ready = 0;
th->arg = arg;
th->next = thread;
thread = th;
mp_thread_unix_end_atomic_section();
return;
er:
mp_raise_OSError(ret);
}
void mp_thread_finish(void) {
mp_thread_unix_begin_atomic_section();
mp_thread_t *prev = NULL;
for (mp_thread_t *th = thread; th != NULL; th = th->next) {
if (th->id == pthread_self()) {
if (prev == NULL) {
thread = th->next;
} else {
prev->next = th->next;
}
free(th);
break;
}
prev = th;
}
mp_thread_unix_end_atomic_section();
}
void mp_thread_mutex_init(mp_thread_mutex_t *mutex) {
pthread_mutex_init(mutex, NULL);
}
int mp_thread_mutex_lock(mp_thread_mutex_t *mutex, int wait) {
int ret;
if (wait) {
ret = pthread_mutex_lock(mutex);
if (ret == 0) {
return 1;
}
} else {
ret = pthread_mutex_trylock(mutex);
if (ret == 0) {
return 1;
} else if (ret == EBUSY) {
return 0;
}
}
return -ret;
}
void mp_thread_mutex_unlock(mp_thread_mutex_t *mutex) {
pthread_mutex_unlock(mutex);
// TODO check return value
}
#endif // MICROPY_PY_THREAD
// this is used even when MICROPY_PY_THREAD is disabled
#if defined(__APPLE__)
#include <mach/mach_error.h>
#include <mach/mach_time.h>
#include <mach/thread_act.h>
#include <mach/thread_policy.h>
bool mp_thread_is_realtime_enabled;
// based on https://developer.apple.com/library/archive/technotes/tn2169/_index.html
void mp_thread_set_realtime(void) {
mach_timebase_info_data_t timebase_info;
mach_timebase_info(&timebase_info);
const uint64_t NANOS_PER_MSEC = 1000000ULL;
double clock2abs = ((double)timebase_info.denom / (double)timebase_info.numer) * NANOS_PER_MSEC;
thread_time_constraint_policy_data_t policy;
policy.period = 0;
policy.computation = (uint32_t)(5 * clock2abs); // 5 ms of work
policy.constraint = (uint32_t)(10 * clock2abs);
policy.preemptible = FALSE;
int kr = thread_policy_set(pthread_mach_thread_np(pthread_self()),
THREAD_TIME_CONSTRAINT_POLICY,
(thread_policy_t)&policy,
THREAD_TIME_CONSTRAINT_POLICY_COUNT);
if (kr != KERN_SUCCESS) {
mach_error("thread_policy_set:", kr);
}
}
#endif