micropython/ports/mimxrt/hal/phy/device/phyrtl8211f/fsl_phyrtl8211f.c

388 wiersze
15 KiB
C

/*
* Copyright 2020 NXP
* All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include "fsl_phyrtl8211f.h"
/*******************************************************************************
* Definitions
******************************************************************************/
/*! @brief Defines the PHY RTL8211F vendor defined registers. */
#define PHY_SPECIFIC_STATUS_REG 0x1AU /*!< The PHY specific status register. */
#define PHY_PAGE_SELECT_REG 0x1FU /*!< The PHY page select register. */
/*! @brief Defines the PHY RTL8211F ID number. */
#define PHY_CONTROL_ID1 0x001CU /*!< The PHY ID1 . */
/*! @brief Defines the mask flag in specific status register. */
#define PHY_SSTATUS_LINKSTATUS_MASK 0x04U /*!< The PHY link status mask. */
#define PHY_SSTATUS_LINKSPEED_MASK 0x30U /*!< The PHY link speed mask. */
#define PHY_SSTATUS_LINKDUPLEX_MASK 0x08U /*!< The PHY link duplex mask. */
#define PHY_SSTATUS_LINKSPEED_SHIFT 4U /*!< The link speed shift */
/*! @brief Defines the PHY RTL8211F extra page and the registers in specified page. */
#define PHY_PAGE_RGMII_TXRX_DELAY_ADDR 0xD08U /*!< The register page including RGMII TX/RX delay setting. */
#define PHY_RGMII_TX_DELAY_REG 0x11U /*!< The RGMII TXC delay register. */
#define PHY_RGMII_RX_DELAY_REG 0x15U /*!< The RGMII RXC delay register. */
#define PHY_RGMII_TX_DELAY_MASK 0x100U /*!< The RGMII TXC delay mask. */
#define PHY_RGMII_RX_DELAY_MASK 0x8U /*!< The RGMII RXC delay mask. */
/*! @brief MDIO MMD Devices .*/
#define PHY_MDIO_MMD_PCS 3U
#define PHY_MDIO_MMD_AN 7U
/*! @brief MDIO MMD Physical Coding layer device registers .*/
#define PHY_MDIO_PCS_EEE_CAP 0x14U /* EEE capability */
/*! @brief MDIO MMD AutoNegotiation device registers .*/
#define PHY_MDIO_AN_EEE_ADV 0x3CU /* EEE advertisement */
/*! @brief MDIO MMD EEE mask flags. (common for adv and cap) */
#define PHY_MDIO_EEE_100TX 0x2U
#define PHY_MDIO_EEE_1000T 0x4U
/*! @brief Defines the timeout macro. */
#define PHY_READID_TIMEOUT_COUNT 1000U
/*******************************************************************************
* Prototypes
******************************************************************************/
static status_t PHY_RTL8211F_MMD_SetDevice(phy_handle_t *handle,
uint8_t device,
uint16_t addr,
phy_mmd_access_mode_t mode);
static inline status_t PHY_RTL8211F_MMD_ReadData(phy_handle_t *handle, uint32_t *data);
static inline status_t PHY_RTL8211F_MMD_WriteData(phy_handle_t *handle, uint32_t data);
static status_t PHY_RTL8211F_MMD_Read(phy_handle_t *handle, uint8_t device, uint16_t addr, uint32_t *data);
static status_t PHY_RTL8211F_MMD_Write(phy_handle_t *handle, uint8_t device, uint16_t addr, uint32_t data);
/*******************************************************************************
* Variables
******************************************************************************/
const phy_operations_t phyrtl8211f_ops = {.phyInit = PHY_RTL8211F_Init,
.phyWrite = PHY_RTL8211F_Write,
.phyRead = PHY_RTL8211F_Read,
.getAutoNegoStatus = PHY_RTL8211F_GetAutoNegotiationStatus,
.getLinkStatus = PHY_RTL8211F_GetLinkStatus,
.getLinkSpeedDuplex = PHY_RTL8211F_GetLinkSpeedDuplex,
.setLinkSpeedDuplex = PHY_RTL8211F_SetLinkSpeedDuplex,
.enableLoopback = PHY_RTL8211F_EnableLoopback};
/*******************************************************************************
* Code
******************************************************************************/
status_t PHY_RTL8211F_Init(phy_handle_t *handle, const phy_config_t *config) {
uint32_t counter = PHY_READID_TIMEOUT_COUNT;
status_t result;
uint32_t regValue = 0U;
/* Init MDIO interface. */
MDIO_Init(handle->mdioHandle);
/* Assign phy address. */
handle->phyAddr = config->phyAddr;
/* Check PHY ID. */
do
{
result = MDIO_Read(handle->mdioHandle, handle->phyAddr, PHY_ID1_REG, &regValue);
if (result != kStatus_Success) {
return result;
}
counter--;
} while ((regValue != PHY_CONTROL_ID1) && (counter != 0U));
if (counter == 0U) {
return kStatus_Fail;
}
/* Reset PHY. */
result = MDIO_Write(handle->mdioHandle, handle->phyAddr, PHY_BASICCONTROL_REG, PHY_BCTL_RESET_MASK);
if (result != kStatus_Success) {
return result;
}
/* The RGMII specifies output TXC/RXC and TXD/RXD without any clock skew. Need to add skew on clock line
to make sure the other side sample right data. This can also be done in PCB traces. */
result = MDIO_Write(handle->mdioHandle, handle->phyAddr, PHY_PAGE_SELECT_REG, PHY_PAGE_RGMII_TXRX_DELAY_ADDR);
if (result != kStatus_Success) {
return result;
}
/* Set Tx Delay. */
result = MDIO_Read(handle->mdioHandle, handle->phyAddr, PHY_RGMII_TX_DELAY_REG, &regValue);
if (result == kStatus_Success) {
regValue |= PHY_RGMII_TX_DELAY_MASK;
result = MDIO_Write(handle->mdioHandle, handle->phyAddr, PHY_RGMII_TX_DELAY_REG, regValue);
if (result != kStatus_Success) {
return result;
}
} else {
return result;
}
/* Set Rx Delay. */
result = MDIO_Read(handle->mdioHandle, handle->phyAddr, PHY_RGMII_RX_DELAY_REG, &regValue);
if (result == kStatus_Success) {
regValue |= PHY_RGMII_RX_DELAY_MASK;
result = MDIO_Write(handle->mdioHandle, handle->phyAddr, PHY_RGMII_RX_DELAY_REG, regValue);
if (result != kStatus_Success) {
return result;
}
} else {
return result;
}
/* Restore to default page 0 */
result = MDIO_Write(handle->mdioHandle, handle->phyAddr, PHY_PAGE_SELECT_REG, 0x0);
if (result != kStatus_Success) {
return result;
}
/* Energy Efficient Ethernet configuration */
if (config->enableEEE) {
/* Get capabilities */
result = PHY_RTL8211F_MMD_Read(handle, PHY_MDIO_MMD_PCS, PHY_MDIO_PCS_EEE_CAP, &regValue);
if (result == kStatus_Success) {
/* Enable EEE for 100TX and 1000T */
result = PHY_RTL8211F_MMD_Write(handle, PHY_MDIO_MMD_AN, PHY_MDIO_AN_EEE_ADV,
regValue & (PHY_MDIO_EEE_1000T | PHY_MDIO_EEE_100TX));
}
} else {
result = PHY_RTL8211F_MMD_Write(handle, PHY_MDIO_MMD_AN, PHY_MDIO_AN_EEE_ADV, 0);
}
if (result != kStatus_Success) {
return result;
}
if (config->autoNeg) {
/* Set the auto-negotiation. */
result =
MDIO_Write(handle->mdioHandle, handle->phyAddr, PHY_AUTONEG_ADVERTISE_REG,
PHY_100BASETX_FULLDUPLEX_MASK | PHY_100BASETX_HALFDUPLEX_MASK | PHY_10BASETX_FULLDUPLEX_MASK |
PHY_10BASETX_HALFDUPLEX_MASK | PHY_IEEE802_3_SELECTOR_MASK);
if (result == kStatus_Success) {
result = MDIO_Write(handle->mdioHandle, handle->phyAddr, PHY_1000BASET_CONTROL_REG,
PHY_1000BASET_FULLDUPLEX_MASK);
if (result == kStatus_Success) {
result = MDIO_Read(handle->mdioHandle, handle->phyAddr, PHY_BASICCONTROL_REG, &regValue);
if (result == kStatus_Success) {
result = MDIO_Write(handle->mdioHandle, handle->phyAddr, PHY_BASICCONTROL_REG,
(regValue | PHY_BCTL_AUTONEG_MASK | PHY_BCTL_RESTART_AUTONEG_MASK));
}
}
}
} else {
/* Disable isolate mode */
result = MDIO_Read(handle->mdioHandle, handle->phyAddr, PHY_BASICCONTROL_REG, &regValue);
if (result != kStatus_Success) {
return result;
}
regValue &= PHY_BCTL_ISOLATE_MASK;
result = MDIO_Write(handle->mdioHandle, handle->phyAddr, PHY_BASICCONTROL_REG, regValue);
if (result != kStatus_Success) {
return result;
}
/* Disable the auto-negotiation and set user-defined speed/duplex configuration. */
result = PHY_RTL8211F_SetLinkSpeedDuplex(handle, config->speed, config->duplex);
}
return result;
}
status_t PHY_RTL8211F_Write(phy_handle_t *handle, uint32_t phyReg, uint32_t data) {
return MDIO_Write(handle->mdioHandle, handle->phyAddr, phyReg, data);
}
status_t PHY_RTL8211F_Read(phy_handle_t *handle, uint32_t phyReg, uint32_t *dataPtr) {
return MDIO_Read(handle->mdioHandle, handle->phyAddr, phyReg, dataPtr);
}
status_t PHY_RTL8211F_GetAutoNegotiationStatus(phy_handle_t *handle, bool *status) {
assert(status);
status_t result;
uint32_t regValue;
*status = false;
/* Check auto negotiation complete. */
result = MDIO_Read(handle->mdioHandle, handle->phyAddr, PHY_BASICSTATUS_REG, &regValue);
if (result == kStatus_Success) {
if ((regValue & PHY_BSTATUS_AUTONEGCOMP_MASK) != 0U) {
*status = true;
}
}
return result;
}
status_t PHY_RTL8211F_GetLinkStatus(phy_handle_t *handle, bool *status) {
assert(status);
status_t result;
uint32_t regValue;
/* Read the basic status register. */
result = MDIO_Read(handle->mdioHandle, handle->phyAddr, PHY_SPECIFIC_STATUS_REG, &regValue);
if (result == kStatus_Success) {
if ((PHY_SSTATUS_LINKSTATUS_MASK & regValue) != 0U) {
/* Link up. */
*status = true;
} else {
/* Link down. */
*status = false;
}
}
return result;
}
status_t PHY_RTL8211F_GetLinkSpeedDuplex(phy_handle_t *handle, phy_speed_t *speed, phy_duplex_t *duplex) {
assert(!((speed == NULL) && (duplex == NULL)));
status_t result;
uint32_t regValue;
/* Read the status register. */
result = MDIO_Read(handle->mdioHandle, handle->phyAddr, PHY_SPECIFIC_STATUS_REG, &regValue);
if (result == kStatus_Success) {
if (speed != NULL) {
switch ((regValue & PHY_SSTATUS_LINKSPEED_MASK) >> PHY_SSTATUS_LINKSPEED_SHIFT)
{
case (uint32_t)kPHY_Speed10M:
*speed = kPHY_Speed10M;
break;
case (uint32_t)kPHY_Speed100M:
*speed = kPHY_Speed100M;
break;
case (uint32_t)kPHY_Speed1000M:
*speed = kPHY_Speed1000M;
break;
default:
*speed = kPHY_Speed10M;
break;
}
}
if (duplex != NULL) {
if ((regValue & PHY_SSTATUS_LINKDUPLEX_MASK) != 0U) {
*duplex = kPHY_FullDuplex;
} else {
*duplex = kPHY_HalfDuplex;
}
}
}
return result;
}
status_t PHY_RTL8211F_SetLinkSpeedDuplex(phy_handle_t *handle, phy_speed_t speed, phy_duplex_t duplex) {
status_t result;
uint32_t regValue;
result = MDIO_Read(handle->mdioHandle, handle->phyAddr, PHY_BASICCONTROL_REG, &regValue);
if (result == kStatus_Success) {
/* Disable the auto-negotiation and set according to user-defined configuration. */
regValue &= ~PHY_BCTL_AUTONEG_MASK;
if (speed == kPHY_Speed1000M) {
regValue &= PHY_BCTL_SPEED0_MASK;
regValue |= PHY_BCTL_SPEED1_MASK;
} else if (speed == kPHY_Speed100M) {
regValue |= PHY_BCTL_SPEED0_MASK;
regValue &= ~PHY_BCTL_SPEED1_MASK;
} else {
regValue &= ~PHY_BCTL_SPEED0_MASK;
regValue &= ~PHY_BCTL_SPEED1_MASK;
}
if (duplex == kPHY_FullDuplex) {
regValue |= PHY_BCTL_DUPLEX_MASK;
} else {
regValue &= ~PHY_BCTL_DUPLEX_MASK;
}
result = MDIO_Write(handle->mdioHandle, handle->phyAddr, PHY_BASICCONTROL_REG, regValue);
}
return result;
}
status_t PHY_RTL8211F_EnableLoopback(phy_handle_t *handle, phy_loop_t mode, phy_speed_t speed, bool enable) {
/* This PHY only supports local loopback. */
assert(mode == kPHY_LocalLoop);
status_t result;
uint32_t regValue;
/* Set the loop mode. */
if (enable) {
if (speed == kPHY_Speed1000M) {
regValue = PHY_BCTL_SPEED1_MASK | PHY_BCTL_DUPLEX_MASK | PHY_BCTL_LOOP_MASK;
} else if (speed == kPHY_Speed100M) {
regValue = PHY_BCTL_SPEED0_MASK | PHY_BCTL_DUPLEX_MASK | PHY_BCTL_LOOP_MASK;
} else {
regValue = PHY_BCTL_DUPLEX_MASK | PHY_BCTL_LOOP_MASK;
}
result = MDIO_Write(handle->mdioHandle, handle->phyAddr, PHY_BASICCONTROL_REG, regValue);
} else {
/* First read the current status in control register. */
result = MDIO_Read(handle->mdioHandle, handle->phyAddr, PHY_BASICCONTROL_REG, &regValue);
if (result == kStatus_Success) {
regValue &= ~PHY_BCTL_LOOP_MASK;
result = MDIO_Write(handle->mdioHandle, handle->phyAddr, PHY_BASICCONTROL_REG,
(regValue | PHY_BCTL_RESTART_AUTONEG_MASK));
}
}
return result;
}
static status_t PHY_RTL8211F_MMD_SetDevice(phy_handle_t *handle,
uint8_t device,
uint16_t addr,
phy_mmd_access_mode_t mode) {
status_t result = kStatus_Success;
/* Set Function mode of address access(b00) and device address. */
result = MDIO_Write(handle->mdioHandle, handle->phyAddr, PHY_MMD_ACCESS_CONTROL_REG, device);
if (result != kStatus_Success) {
return result;
}
/* Set register address. */
result = MDIO_Write(handle->mdioHandle, handle->phyAddr, PHY_MMD_ACCESS_DATA_REG, addr);
if (result != kStatus_Success) {
return result;
}
/* Set Function mode of data access(b01~11) and device address. */
result =
MDIO_Write(handle->mdioHandle, handle->phyAddr, PHY_MMD_ACCESS_CONTROL_REG, (uint32_t)mode | (uint32_t)device);
return result;
}
static inline status_t PHY_RTL8211F_MMD_ReadData(phy_handle_t *handle, uint32_t *data) {
return MDIO_Read(handle->mdioHandle, handle->phyAddr, PHY_MMD_ACCESS_DATA_REG, data);
}
static inline status_t PHY_RTL8211F_MMD_WriteData(phy_handle_t *handle, uint32_t data) {
return MDIO_Write(handle->mdioHandle, handle->phyAddr, PHY_MMD_ACCESS_DATA_REG, data);
}
static status_t PHY_RTL8211F_MMD_Read(phy_handle_t *handle, uint8_t device, uint16_t addr, uint32_t *data) {
status_t result = kStatus_Success;
result = PHY_RTL8211F_MMD_SetDevice(handle, device, addr, kPHY_MMDAccessNoPostIncrement);
if (result == kStatus_Success) {
result = PHY_RTL8211F_MMD_ReadData(handle, data);
}
return result;
}
static status_t PHY_RTL8211F_MMD_Write(phy_handle_t *handle, uint8_t device, uint16_t addr, uint32_t data) {
status_t result = kStatus_Success;
result = PHY_RTL8211F_MMD_SetDevice(handle, device, addr, kPHY_MMDAccessNoPostIncrement);
if (result == kStatus_Success) {
result = PHY_RTL8211F_MMD_WriteData(handle, data);
}
return result;
}