micropython/esp8266/modpybrtc.c

178 wiersze
5.9 KiB
C

/*
* This file is part of the Micro Python project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2015 Josef Gajdusek
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <stdio.h>
#include <string.h>
#include "py/nlr.h"
#include "py/obj.h"
#include "py/runtime.h"
#include "timeutils.h"
#include "user_interface.h"
#include "modpyb.h"
typedef struct _pyb_rtc_obj_t {
mp_obj_base_t base;
} pyb_rtc_obj_t;
#define MEM_MAGIC 0x75507921
#define MEM_DELTA_ADDR 64
#define MEM_CAL_ADDR (MEM_DELTA_ADDR + 2)
#define MEM_USER_MAGIC_ADDR (MEM_CAL_ADDR + 1)
#define MEM_USER_LEN_ADDR (MEM_USER_MAGIC_ADDR + 1)
#define MEM_USER_DATA_ADDR (MEM_USER_LEN_ADDR + 1)
#define MEM_USER_MAXLEN (512 - (MEM_USER_DATA_ADDR - MEM_DELTA_ADDR) * 4)
// singleton RTC object
STATIC const pyb_rtc_obj_t pyb_rtc_obj = {{&pyb_rtc_type}};
STATIC mp_obj_t pyb_rtc_make_new(const mp_obj_type_t *type, mp_uint_t n_args, mp_uint_t n_kw, const mp_obj_t *args) {
// check arguments
mp_arg_check_num(n_args, n_kw, 0, 0, false);
// return constant object
return (mp_obj_t)&pyb_rtc_obj;
}
STATIC uint64_t pyb_rtc_raw_us(uint64_t cal) {
return (system_get_rtc_time() * cal) >> 12;
};
void pyb_rtc_set_us_since_2000(uint64_t nowus) {
uint32_t cal = system_rtc_clock_cali_proc();
int64_t delta = nowus - pyb_rtc_raw_us(cal);
// As the calibration value jitters quite a bit, to make the
// clock at least somewhat practially usable, we need to store it
system_rtc_mem_write(MEM_CAL_ADDR, &cal, sizeof(cal));
system_rtc_mem_write(MEM_DELTA_ADDR, &delta, sizeof(delta));
};
uint64_t pyb_rtc_get_us_since_2000() {
uint32_t cal;
int64_t delta;
system_rtc_mem_read(MEM_CAL_ADDR, &cal, sizeof(cal));
system_rtc_mem_read(MEM_DELTA_ADDR, &delta, sizeof(delta));
return pyb_rtc_raw_us(cal) + delta;
};
STATIC mp_obj_t pyb_rtc_datetime(mp_uint_t n_args, const mp_obj_t *args) {
if (n_args == 1) {
// Get time
uint64_t msecs = pyb_rtc_get_us_since_2000() / 1000;
timeutils_struct_time_t tm;
timeutils_seconds_since_2000_to_struct_time(msecs / 1000, &tm);
mp_obj_t tuple[8] = {
mp_obj_new_int(tm.tm_year),
mp_obj_new_int(tm.tm_mon),
mp_obj_new_int(tm.tm_mday),
mp_obj_new_int(tm.tm_wday),
mp_obj_new_int(tm.tm_hour),
mp_obj_new_int(tm.tm_min),
mp_obj_new_int(tm.tm_sec),
mp_obj_new_int(msecs % 1000)
};
return mp_obj_new_tuple(8, tuple);
} else {
// Set time
mp_obj_t *items;
mp_obj_get_array_fixed_n(args[1], 8, &items);
pyb_rtc_set_us_since_2000(
((uint64_t)timeutils_seconds_since_2000(
mp_obj_get_int(items[0]),
mp_obj_get_int(items[1]),
mp_obj_get_int(items[2]),
mp_obj_get_int(items[4]),
mp_obj_get_int(items[5]),
mp_obj_get_int(items[6])) * 1000 + mp_obj_get_int(items[7])) * 1000);
return mp_const_none;
}
}
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pyb_rtc_datetime_obj, 1, 2, pyb_rtc_datetime);
STATIC mp_obj_t pyb_rtc_memory(mp_uint_t n_args, const mp_obj_t *args) {
uint8_t rtcram[MEM_USER_MAXLEN];
uint32_t len;
uint32_t magic;
if (n_args == 1) {
system_rtc_mem_read(MEM_USER_MAGIC_ADDR, &magic, sizeof(magic));
if (magic != MEM_MAGIC) {
return mp_const_none;
}
system_rtc_mem_read(MEM_USER_LEN_ADDR, &len, sizeof(len));
system_rtc_mem_read(MEM_USER_DATA_ADDR, rtcram, len + (4 - len % 4));
return mp_obj_new_bytes(rtcram, len);
} else {
mp_buffer_info_t bufinfo;
mp_get_buffer_raise(args[1], &bufinfo, MP_BUFFER_READ);
if (bufinfo.len > MEM_USER_MAXLEN) {
nlr_raise(mp_obj_new_exception_msg(&mp_type_ValueError,
"buffer too long"));
}
magic = MEM_MAGIC;
system_rtc_mem_write(MEM_USER_MAGIC_ADDR, &magic, sizeof(magic));
len = bufinfo.len;
system_rtc_mem_write(MEM_USER_LEN_ADDR, &len, sizeof(len));
int i = 0;
for (; i < bufinfo.len; i++) {
rtcram[i] = ((uint8_t *)bufinfo.buf)[i];
}
system_rtc_mem_write(MEM_USER_DATA_ADDR, rtcram, len + (4 - len % 4));
return mp_const_none;
}
}
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pyb_rtc_memory_obj, 1, 2, pyb_rtc_memory);
STATIC const mp_map_elem_t pyb_rtc_locals_dict_table[] = {
{ MP_OBJ_NEW_QSTR(MP_QSTR_datetime), (mp_obj_t)&pyb_rtc_datetime_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_memory), (mp_obj_t)&pyb_rtc_memory_obj },
};
STATIC MP_DEFINE_CONST_DICT(pyb_rtc_locals_dict, pyb_rtc_locals_dict_table);
const mp_obj_type_t pyb_rtc_type = {
{ &mp_type_type },
.name = MP_QSTR_RTC,
.make_new = pyb_rtc_make_new,
.locals_dict = (mp_obj_t)&pyb_rtc_locals_dict,
};