micropython/ports/samd/machine_dac.c

400 wiersze
13 KiB
C

/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2017 Nick Moore
* Copyright (c) 2022 Robert Hammelrath
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "py/runtime.h"
#if MICROPY_PY_MACHINE_DAC
#include <stdint.h>
#include "py/obj.h"
#include "py/runtime.h"
#include "py/mperrno.h"
#include "py/mphal.h"
#include "sam.h"
#include "pin_af.h"
#include "modmachine.h"
#include "samd_soc.h"
#include "dma_manager.h"
#include "tc_manager.h"
typedef struct _dac_obj_t {
mp_obj_base_t base;
uint8_t id;
bool initialized;
mp_hal_pin_obj_t gpio_id;
uint8_t vref;
int8_t dma_channel;
int8_t tc_index;
bool busy;
uint32_t count;
mp_obj_t callback;
} dac_obj_t;
Dac *const dac_bases[] = DAC_INSTS;
static void dac_init(dac_obj_t *self, Dac *dac);
static mp_obj_t dac_deinit(mp_obj_t self_in);
#if defined(MCU_SAMD21)
#define MAX_DAC_VALUE (1023)
#define DEFAULT_DAC_VREF (1)
#define MAX_DAC_VREF (2)
static dac_obj_t dac_obj[] = {
{{&machine_dac_type}, 0, 0, PIN_PA02, DEFAULT_DAC_VREF, -1, -1, false, 1, NULL},
};
#elif defined(MCU_SAMD51)
#define MAX_DAC_VALUE (4095)
#define DEFAULT_DAC_VREF (2)
#define MAX_DAC_VREF (3)
static dac_obj_t dac_obj[] = {
{{&machine_dac_type}, 0, 0, PIN_PA02, DEFAULT_DAC_VREF, -1, -1, false, 1, NULL},
{{&machine_dac_type}, 1, 0, PIN_PA05, DEFAULT_DAC_VREF, -1, -1, false, 1, NULL},
};
// According to Errata 2.9.2, VDDANA as ref value is not available. However it worked
// in tests. So I keep the selection here but set the default to Aref, which is usually
// connected at the Board to VDDANA
static uint8_t dac_vref_table[] = {
DAC_CTRLB_REFSEL_INTREF_Val, DAC_CTRLB_REFSEL_VDDANA_Val,
DAC_CTRLB_REFSEL_VREFPU_Val, DAC_CTRLB_REFSEL_VREFPB_Val
};
#endif // defined SAMD21 or SAMD51
void dac_irq_handler(int dma_channel) {
dac_obj_t *self;
#if defined(MCU_SAMD21)
DMAC->CHID.reg = dma_channel;
DMAC->CHINTFLAG.reg = DMAC_CHINTFLAG_TCMPL;
self = &dac_obj[0];
if (self->count > 1) {
self->count -= 1;
dma_desc[self->dma_channel].BTCTRL.reg |= DMAC_BTCTRL_VALID;
DMAC->CHCTRLA.reg |= DMAC_CHCTRLA_ENABLE;
} else {
self->busy = false;
if (self->callback != MP_OBJ_NULL) {
mp_sched_schedule(self->callback, self);
}
}
#elif defined(MCU_SAMD51)
DMAC->Channel[dma_channel].CHINTFLAG.reg = DMAC_CHINTFLAG_TCMPL;
if (dac_obj[0].dma_channel == dma_channel) {
self = &dac_obj[0];
} else {
self = &dac_obj[1];
}
if (self->count > 1) {
self->count -= 1;
dma_desc[self->dma_channel].BTCTRL.reg |= DMAC_BTCTRL_VALID;
DMAC->Channel[self->dma_channel].CHCTRLA.reg |= DMAC_CHCTRLA_ENABLE;
} else {
self->busy = false;
if (self->callback != MP_OBJ_NULL) {
mp_sched_schedule(self->callback, self);
}
}
#endif
}
static mp_obj_t dac_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw,
const mp_obj_t *all_args) {
enum { ARG_id, ARG_vref, ARG_callback };
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_id, MP_ARG_REQUIRED | MP_ARG_INT, {.u_int = 0} },
{ MP_QSTR_vref, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = DEFAULT_DAC_VREF} },
{ MP_QSTR_callback, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} },
};
// Parse the arguments.
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all_kw_array(n_args, n_kw, all_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
uint8_t id = args[ARG_id].u_int;
dac_obj_t *self = NULL;
if (0 <= id && id < MP_ARRAY_SIZE(dac_obj)) {
self = &dac_obj[id];
} else {
mp_raise_ValueError(MP_ERROR_TEXT("invalid DAC ID"));
}
uint8_t vref = args[ARG_vref].u_int;
if (0 <= vref && vref <= MAX_DAC_VREF) {
self->vref = vref;
}
self->callback = args[ARG_callback].u_obj;
if (self->callback == mp_const_none) {
self->callback = MP_OBJ_NULL;
}
self->dma_channel = -1;
self->tc_index = -1;
self->initialized = false;
Dac *dac = dac_bases[0]; // Just one DAC
dac_init(self, dac);
// Set the port as given in self->gpio_id as DAC
mp_hal_set_pin_mux(self->gpio_id, ALT_FCT_DAC);
return MP_OBJ_FROM_PTR(self);
}
static void dac_init(dac_obj_t *self, Dac *dac) {
// Init DAC
if (self->initialized == false) {
#if defined(MCU_SAMD21)
// Configuration SAMD21
// Enable APBC clocks and PCHCTRL clocks; GCLK5 at 48 MHz
PM->APBCMASK.reg |= PM_APBCMASK_DAC;
GCLK->CLKCTRL.reg = GCLK_CLKCTRL_CLKEN | GCLK_CLKCTRL_GEN_GCLK5 | GCLK_CLKCTRL_ID_DAC;
while (GCLK->STATUS.bit.SYNCBUSY) {
}
// Reset DAC registers
dac->CTRLA.bit.SWRST = 1;
while (dac->CTRLA.bit.SWRST) {
}
dac->CTRLB.reg = DAC_CTRLB_EOEN | DAC_CTRLB_REFSEL(self->vref);
// Enable DAC and wait to be ready
dac->CTRLA.bit.ENABLE = 1;
while (dac->STATUS.bit.SYNCBUSY) {
}
#elif defined(MCU_SAMD51)
// Configuration SAMD51
// Enable APBD clocks and PCHCTRL clocks; GCLK5 at 48 MHz
MCLK->APBDMASK.reg |= MCLK_APBDMASK_DAC;
GCLK->PCHCTRL[DAC_GCLK_ID].reg = GCLK_PCHCTRL_GEN_GCLK5 | GCLK_PCHCTRL_CHEN;
// If the DAC is enabled it was already reset
// In that case just disable it.
if (dac->CTRLA.bit.ENABLE) {
// Enable DAC and wait to be ready
dac->CTRLA.bit.ENABLE = 0;
while (dac->SYNCBUSY.bit.ENABLE) {
}
} else {
// Reset DAC registers
dac->CTRLA.bit.SWRST = 1;
while (dac->CTRLA.bit.SWRST) {
}
}
dac->CTRLB.reg = DAC_CTRLB_REFSEL(dac_vref_table[self->vref]);
dac->DACCTRL[self->id].reg = DAC_DACCTRL_ENABLE | DAC_DACCTRL_REFRESH(2) | DAC_DACCTRL_CCTRL_CC12M;
// Enable DAC and wait to be ready
dac->CTRLA.bit.ENABLE = 1;
while (dac->SYNCBUSY.bit.ENABLE) {
}
#endif // defined SAMD21 or SAMD51
}
self->initialized = true;
}
static void dac_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) {
dac_obj_t *self = self_in;
mp_printf(print, "DAC(%u, Pin=%q, vref=%d)", self->id, pin_find_by_id(self->gpio_id)->name, self->vref);
}
static mp_obj_t dac_write(mp_obj_t self_in, mp_obj_t value_in) {
Dac *dac = dac_bases[0]; // Just one DAC
dac_obj_t *self = self_in;
if (self->busy != false) {
mp_raise_OSError(MP_EBUSY);
}
int value = mp_obj_get_int(value_in);
if (value < 0 || value > MAX_DAC_VALUE) {
mp_raise_ValueError(MP_ERROR_TEXT("value out of range"));
}
// Re-init, if required
dac_init(self, dac);
#if defined(MCU_SAMD21)
dac->DATA.reg = value;
#elif defined(MCU_SAMD51)
dac->DATA[self->id].reg = value;
#endif
return mp_const_none;
}
MP_DEFINE_CONST_FUN_OBJ_2(dac_write_obj, dac_write);
static mp_obj_t dac_write_timed(size_t n_args, const mp_obj_t *args) {
Dac *dac = dac_bases[0]; // Just one DAC used
dac_obj_t *self = args[0];
mp_buffer_info_t src;
// Re-init, if required
dac_init(self, dac);
mp_get_buffer_raise(args[1], &src, MP_BUFFER_READ);
if (n_args > 3) {
self->count = mp_obj_get_int(args[3]);
} else {
self->count = 1;
}
if (src.len >= 2) {
int freq = mp_obj_get_int(args[2]);
if (self->dma_channel == -1) {
self->dma_channel = allocate_dma_channel();
dma_init();
dma_register_irq(self->dma_channel, dac_irq_handler);
}
if (self->tc_index == -1) {
self->tc_index = allocate_tc_instance();
}
// Configure TC; no need to check the return value
configure_tc(self->tc_index, freq, 0);
self->busy = true;
// Configure DMA for halfword output to the DAC
#if defined(MCU_SAMD21)
dma_desc[self->dma_channel].BTCTRL.reg =
DMAC_BTCTRL_VALID | DMAC_BTCTRL_BLOCKACT_NOACT |
DMAC_BTCTRL_BEATSIZE_HWORD | DMAC_BTCTRL_SRCINC | DMAC_BTCTRL_STEPSEL |
DMAC_BTCTRL_STEPSIZE(DMAC_BTCTRL_STEPSIZE_X1_Val);
dma_desc[self->dma_channel].BTCNT.reg = src.len / 2;
dma_desc[self->dma_channel].SRCADDR.reg = (uint32_t)(src.buf) + src.len;
dma_desc[self->dma_channel].DSTADDR.reg = (uint32_t)(&dac->DATA.reg);
if (self->count >= 1) {
dma_desc[self->dma_channel].DESCADDR.reg = 0; // ONE_SHOT
} else {
dma_desc[self->dma_channel].DESCADDR.reg = (uint32_t)(&dma_desc[self->dma_channel].BTCTRL.reg);
}
DMAC->CHID.reg = self->dma_channel;
DMAC->CHCTRLA.reg = 0;
while (DMAC->CHCTRLA.bit.ENABLE) {
}
DMAC->CHCTRLB.reg =
DMAC_CHCTRLB_LVL(0) |
DMAC_CHCTRLB_TRIGACT_BEAT |
DMAC_CHCTRLB_TRIGSRC(TC3_DMAC_ID_OVF + 3 * self->tc_index);
DMAC->CHINTENSET.reg = DMAC_CHINTFLAG_TCMPL;
DMAC->CHCTRLA.reg |= DMAC_CHCTRLA_ENABLE;
NVIC_EnableIRQ(DMAC_IRQn);
#elif defined(MCU_SAMD51)
dma_desc[self->dma_channel].BTCTRL.reg =
DMAC_BTCTRL_VALID | DMAC_BTCTRL_BLOCKACT_NOACT |
DMAC_BTCTRL_BEATSIZE_HWORD | DMAC_BTCTRL_SRCINC | DMAC_BTCTRL_STEPSEL |
DMAC_BTCTRL_STEPSIZE(DMAC_BTCTRL_STEPSIZE_X1_Val);
dma_desc[self->dma_channel].BTCNT.reg = src.len / 2;
dma_desc[self->dma_channel].SRCADDR.reg = (uint32_t)(src.buf) + src.len;
dma_desc[self->dma_channel].DSTADDR.reg = (uint32_t)(&dac->DATA[self->id].reg);
if (self->count >= 1) {
dma_desc[self->dma_channel].DESCADDR.reg = 0; // ONE_SHOT
} else {
dma_desc[self->dma_channel].DESCADDR.reg = (uint32_t)(&dma_desc[self->dma_channel].BTCTRL.reg);
}
DMAC->Channel[self->dma_channel].CHCTRLA.reg =
DMAC_CHCTRLA_BURSTLEN(DMAC_CHCTRLA_BURSTLEN_SINGLE_Val) |
DMAC_CHCTRLA_TRIGACT(DMAC_CHCTRLA_TRIGACT_BURST_Val) |
DMAC_CHCTRLA_TRIGSRC(TC0_DMAC_ID_OVF + 3 * self->tc_index);
DMAC->Channel[self->dma_channel].CHINTENSET.reg = DMAC_CHINTENSET_TCMPL;
DMAC->Channel[self->dma_channel].CHCTRLA.reg |= DMAC_CHCTRLA_ENABLE;
if (self->dma_channel < 4) {
NVIC_EnableIRQ(DMAC_0_IRQn + self->dma_channel);
} else {
NVIC_EnableIRQ(DMAC_4_IRQn);
}
#endif // defined SAMD21 or SAMD51
}
return mp_const_none;
}
static MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(dac_write_timed_obj, 3, 4, dac_write_timed);
static mp_obj_t dac_deinit(mp_obj_t self_in) {
dac_obj_t *self = self_in;
self->initialized = false;
// Reset the DAC to lower the current consumption as SAMD21
dac_bases[0]->CTRLA.bit.SWRST = 1;
if (self->dma_channel >= 0) {
dac_stop_dma(self->dma_channel, true);
free_dma_channel(self->dma_channel);
self->dma_channel = -1;
}
if (self->tc_index >= 0) {
free_tc_instance(self->tc_index);
self->tc_index = -1;
}
self->callback = MP_OBJ_NULL;
self->busy = false;
return mp_const_none;
}
MP_DEFINE_CONST_FUN_OBJ_1(dac_deinit_obj, dac_deinit);
// busy() : Report, if the DAC device is busy
static mp_obj_t machine_dac_busy(mp_obj_t self_in) {
dac_obj_t *self = MP_OBJ_TO_PTR(self_in);
return self->busy ? mp_const_true : mp_const_false;
}
static MP_DEFINE_CONST_FUN_OBJ_1(machine_dac_busy_obj, machine_dac_busy);
// Clear the DMA channel entry in the DAC object.
void dac_deinit_channel(void) {
dac_obj[0].dma_channel = -1;
#if defined(MCU_SAMD51)
dac_obj[1].dma_channel = -1;
#endif
}
static const mp_rom_map_elem_t dac_locals_dict_table[] = {
{ MP_ROM_QSTR(MP_QSTR_busy), MP_ROM_PTR(&machine_dac_busy_obj) },
{ MP_ROM_QSTR(MP_QSTR_deinit), MP_ROM_PTR(&dac_deinit_obj) },
{ MP_ROM_QSTR(MP_QSTR_write), MP_ROM_PTR(&dac_write_obj) },
{ MP_ROM_QSTR(MP_QSTR_write_timed), MP_ROM_PTR(&dac_write_timed_obj) },
};
static MP_DEFINE_CONST_DICT(dac_locals_dict, dac_locals_dict_table);
MP_DEFINE_CONST_OBJ_TYPE(
machine_dac_type,
MP_QSTR_DAC,
MP_TYPE_FLAG_NONE,
make_new, dac_make_new,
print, dac_print,
locals_dict, &dac_locals_dict
);
#endif