micropython/py/objfun.c

517 wiersze
17 KiB
C

/*
* This file is part of the Micro Python project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2013, 2014 Damien P. George
* Copyright (c) 2014 Paul Sokolovsky
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <string.h>
#include <assert.h>
#include "py/nlr.h"
#include "py/objtuple.h"
#include "py/objfun.h"
#include "py/runtime0.h"
#include "py/runtime.h"
#include "py/bc.h"
#include "py/stackctrl.h"
#if 0 // print debugging info
#define DEBUG_PRINT (1)
#else // don't print debugging info
#define DEBUG_PRINT (0)
#define DEBUG_printf(...) (void)0
#endif
// Note: the "name" entry in mp_obj_type_t for a function type must be
// MP_QSTR_function because it is used to determine if an object is of generic
// function type.
/******************************************************************************/
/* builtin functions */
// mp_obj_fun_builtin_t defined in obj.h
STATIC mp_obj_t fun_builtin_call(mp_obj_t self_in, mp_uint_t n_args, mp_uint_t n_kw, const mp_obj_t *args) {
assert(MP_OBJ_IS_TYPE(self_in, &mp_type_fun_builtin));
mp_obj_fun_builtin_t *self = self_in;
// check number of arguments
mp_arg_check_num(n_args, n_kw, self->n_args_min, self->n_args_max, self->is_kw);
if (self->is_kw) {
// function allows keywords
// we create a map directly from the given args array
mp_map_t kw_args;
mp_map_init_fixed_table(&kw_args, n_kw, args + n_args);
return ((mp_fun_kw_t)self->fun)(n_args, args, &kw_args);
} else if (self->n_args_min <= 3 && self->n_args_min == self->n_args_max) {
// function requires a fixed number of arguments
// dispatch function call
switch (self->n_args_min) {
case 0:
return ((mp_fun_0_t)self->fun)();
case 1:
return ((mp_fun_1_t)self->fun)(args[0]);
case 2:
return ((mp_fun_2_t)self->fun)(args[0], args[1]);
case 3:
default:
return ((mp_fun_3_t)self->fun)(args[0], args[1], args[2]);
}
} else {
// function takes a variable number of arguments, but no keywords
return ((mp_fun_var_t)self->fun)(n_args, args);
}
}
const mp_obj_type_t mp_type_fun_builtin = {
{ &mp_type_type },
.name = MP_QSTR_function,
.call = fun_builtin_call,
};
/******************************************************************************/
/* byte code functions */
const char *mp_obj_code_get_name(const byte *code_info) {
mp_decode_uint(&code_info); // skip code_info_size entry
return qstr_str(mp_decode_uint(&code_info));
}
const char *mp_obj_fun_get_name(mp_const_obj_t fun_in) {
const mp_obj_fun_bc_t *fun = fun_in;
const byte *code_info = fun->bytecode;
return mp_obj_code_get_name(code_info);
}
#if MICROPY_CPYTHON_COMPAT
STATIC void fun_bc_print(void (*print)(void *env, const char *fmt, ...), void *env, mp_obj_t o_in, mp_print_kind_t kind) {
(void)kind;
mp_obj_fun_bc_t *o = o_in;
print(env, "<function %s at 0x%x>", mp_obj_fun_get_name(o), o);
}
#endif
#if DEBUG_PRINT
STATIC void dump_args(const mp_obj_t *a, mp_uint_t sz) {
DEBUG_printf("%p: ", a);
for (mp_uint_t i = 0; i < sz; i++) {
DEBUG_printf("%p ", a[i]);
}
DEBUG_printf("\n");
}
#else
#define dump_args(...) (void)0
#endif
// With this macro you can tune the maximum number of function state bytes
// that will be allocated on the stack. Any function that needs more
// than this will use the heap.
#define VM_MAX_STATE_ON_STACK (10 * sizeof(mp_uint_t))
// Set this to enable a simple stack overflow check.
#define VM_DETECT_STACK_OVERFLOW (0)
STATIC mp_obj_t fun_bc_call(mp_obj_t self_in, mp_uint_t n_args, mp_uint_t n_kw, const mp_obj_t *args) {
MP_STACK_CHECK();
DEBUG_printf("Input n_args: " UINT_FMT ", n_kw: " UINT_FMT "\n", n_args, n_kw);
DEBUG_printf("Input pos args: ");
dump_args(args, n_args);
DEBUG_printf("Input kw args: ");
dump_args(args + n_args, n_kw * 2);
mp_obj_fun_bc_t *self = self_in;
DEBUG_printf("Func n_def_args: %d\n", self->n_def_args);
// skip code-info block
const byte *code_info = self->bytecode;
mp_uint_t code_info_size = mp_decode_uint(&code_info);
const byte *ip = self->bytecode + code_info_size;
// bytecode prelude: skip arg names
ip += (self->n_pos_args + self->n_kwonly_args) * sizeof(mp_obj_t);
// bytecode prelude: state size and exception stack size
mp_uint_t n_state = mp_decode_uint(&ip);
mp_uint_t n_exc_stack = mp_decode_uint(&ip);
#if VM_DETECT_STACK_OVERFLOW
n_state += 1;
#endif
// allocate state for locals and stack
mp_uint_t state_size = n_state * sizeof(mp_obj_t) + n_exc_stack * sizeof(mp_exc_stack_t);
mp_code_state *code_state;
if (state_size > VM_MAX_STATE_ON_STACK) {
code_state = m_new_obj_var(mp_code_state, byte, state_size);
} else {
code_state = alloca(sizeof(mp_code_state) + state_size);
}
code_state->n_state = n_state;
code_state->ip = ip;
mp_setup_code_state(code_state, self_in, n_args, n_kw, args);
// execute the byte code with the correct globals context
mp_obj_dict_t *old_globals = mp_globals_get();
mp_globals_set(self->globals);
mp_vm_return_kind_t vm_return_kind = mp_execute_bytecode(code_state, MP_OBJ_NULL);
mp_globals_set(old_globals);
#if VM_DETECT_STACK_OVERFLOW
if (vm_return_kind == MP_VM_RETURN_NORMAL) {
if (code_state->sp < code_state->state) {
printf("VM stack underflow: " INT_FMT "\n", code_state->sp - code_state->state);
assert(0);
}
}
// We can't check the case when an exception is returned in state[n_state - 1]
// and there are no arguments, because in this case our detection slot may have
// been overwritten by the returned exception (which is allowed).
if (!(vm_return_kind == MP_VM_RETURN_EXCEPTION && self->n_pos_args + self->n_kwonly_args == 0)) {
// Just check to see that we have at least 1 null object left in the state.
bool overflow = true;
for (mp_uint_t i = 0; i < n_state - self->n_pos_args - self->n_kwonly_args; i++) {
if (code_state->state[i] == MP_OBJ_NULL) {
overflow = false;
break;
}
}
if (overflow) {
printf("VM stack overflow state=%p n_state+1=" UINT_FMT "\n", code_state->state, n_state);
assert(0);
}
}
#endif
mp_obj_t result;
switch (vm_return_kind) {
case MP_VM_RETURN_NORMAL:
// return value is in *sp
result = *code_state->sp;
break;
case MP_VM_RETURN_EXCEPTION:
// return value is in state[n_state - 1]
result = code_state->state[n_state - 1];
break;
case MP_VM_RETURN_YIELD: // byte-code shouldn't yield
default:
assert(0);
result = mp_const_none;
vm_return_kind = MP_VM_RETURN_NORMAL;
break;
}
// free the state if it was allocated on the heap
if (state_size > VM_MAX_STATE_ON_STACK) {
m_del_var(mp_code_state, byte, state_size, code_state);
}
if (vm_return_kind == MP_VM_RETURN_NORMAL) {
return result;
} else { // MP_VM_RETURN_EXCEPTION
nlr_raise(result);
}
}
const mp_obj_type_t mp_type_fun_bc = {
{ &mp_type_type },
.name = MP_QSTR_function,
#if MICROPY_CPYTHON_COMPAT
.print = fun_bc_print,
#endif
.call = fun_bc_call,
};
mp_obj_t mp_obj_new_fun_bc(mp_uint_t scope_flags, mp_uint_t n_pos_args, mp_uint_t n_kwonly_args, mp_obj_t def_args_in, mp_obj_t def_kw_args, const byte *code) {
mp_uint_t n_def_args = 0;
mp_uint_t n_extra_args = 0;
mp_obj_tuple_t *def_args = def_args_in;
if (def_args != MP_OBJ_NULL) {
assert(MP_OBJ_IS_TYPE(def_args, &mp_type_tuple));
n_def_args = def_args->len;
n_extra_args = def_args->len;
}
if (def_kw_args != MP_OBJ_NULL) {
n_extra_args += 1;
}
mp_obj_fun_bc_t *o = m_new_obj_var(mp_obj_fun_bc_t, mp_obj_t, n_extra_args);
o->base.type = &mp_type_fun_bc;
o->globals = mp_globals_get();
o->n_pos_args = n_pos_args;
o->n_kwonly_args = n_kwonly_args;
o->n_def_args = n_def_args;
o->has_def_kw_args = def_kw_args != MP_OBJ_NULL;
o->takes_var_args = (scope_flags & MP_SCOPE_FLAG_VARARGS) != 0;
o->takes_kw_args = (scope_flags & MP_SCOPE_FLAG_VARKEYWORDS) != 0;
o->bytecode = code;
if (def_args != MP_OBJ_NULL) {
memcpy(o->extra_args, def_args->items, n_def_args * sizeof(mp_obj_t));
}
if (def_kw_args != MP_OBJ_NULL) {
o->extra_args[n_def_args] = def_kw_args;
}
return o;
}
/******************************************************************************/
/* native functions */
#if MICROPY_EMIT_NATIVE
typedef struct _mp_obj_fun_native_t {
mp_obj_base_t base;
mp_uint_t n_args;
void *fun_data; // GC must be able to trace this pointer
// TODO add mp_map_t *globals
} mp_obj_fun_native_t;
typedef mp_obj_t (*native_fun_0_t)(void);
typedef mp_obj_t (*native_fun_1_t)(mp_obj_t);
typedef mp_obj_t (*native_fun_2_t)(mp_obj_t, mp_obj_t);
typedef mp_obj_t (*native_fun_3_t)(mp_obj_t, mp_obj_t, mp_obj_t);
STATIC mp_obj_t fun_native_call(mp_obj_t self_in, mp_uint_t n_args, mp_uint_t n_kw, const mp_obj_t *args) {
mp_obj_fun_native_t *self = self_in;
mp_arg_check_num(n_args, n_kw, self->n_args, self->n_args, false);
void *fun = MICROPY_MAKE_POINTER_CALLABLE(self->fun_data);
switch (n_args) {
case 0:
return ((native_fun_0_t)fun)();
case 1:
return ((native_fun_1_t)fun)(args[0]);
case 2:
return ((native_fun_2_t)fun)(args[0], args[1]);
case 3:
return ((native_fun_3_t)fun)(args[0], args[1], args[2]);
default:
assert(0);
return mp_const_none;
}
}
STATIC const mp_obj_type_t mp_type_fun_native = {
{ &mp_type_type },
.name = MP_QSTR_function,
.call = fun_native_call,
};
mp_obj_t mp_obj_new_fun_native(mp_uint_t n_args, void *fun_data) {
assert(0 <= n_args && n_args <= 3);
mp_obj_fun_native_t *o = m_new_obj(mp_obj_fun_native_t);
o->base.type = &mp_type_fun_native;
o->n_args = n_args;
o->fun_data = fun_data;
return o;
}
#endif // MICROPY_EMIT_NATIVE
/******************************************************************************/
/* viper functions */
#if MICROPY_EMIT_NATIVE
typedef struct _mp_obj_fun_viper_t {
mp_obj_base_t base;
mp_uint_t n_args;
void *fun_data; // GC must be able to trace this pointer
mp_uint_t type_sig;
} mp_obj_fun_viper_t;
typedef mp_uint_t (*viper_fun_0_t)(void);
typedef mp_uint_t (*viper_fun_1_t)(mp_uint_t);
typedef mp_uint_t (*viper_fun_2_t)(mp_uint_t, mp_uint_t);
typedef mp_uint_t (*viper_fun_3_t)(mp_uint_t, mp_uint_t, mp_uint_t);
STATIC mp_obj_t fun_viper_call(mp_obj_t self_in, mp_uint_t n_args, mp_uint_t n_kw, const mp_obj_t *args) {
mp_obj_fun_viper_t *self = self_in;
mp_arg_check_num(n_args, n_kw, self->n_args, self->n_args, false);
void *fun = MICROPY_MAKE_POINTER_CALLABLE(self->fun_data);
mp_uint_t ret;
if (n_args == 0) {
ret = ((viper_fun_0_t)fun)();
} else if (n_args == 1) {
ret = ((viper_fun_1_t)fun)(mp_convert_obj_to_native(args[0], self->type_sig >> 2));
} else if (n_args == 2) {
ret = ((viper_fun_2_t)fun)(mp_convert_obj_to_native(args[0], self->type_sig >> 2), mp_convert_obj_to_native(args[1], self->type_sig >> 4));
} else if (n_args == 3) {
ret = ((viper_fun_3_t)fun)(mp_convert_obj_to_native(args[0], self->type_sig >> 2), mp_convert_obj_to_native(args[1], self->type_sig >> 4), mp_convert_obj_to_native(args[2], self->type_sig >> 6));
} else {
assert(0);
ret = 0;
}
return mp_convert_native_to_obj(ret, self->type_sig);
}
STATIC const mp_obj_type_t mp_type_fun_viper = {
{ &mp_type_type },
.name = MP_QSTR_function,
.call = fun_viper_call,
};
mp_obj_t mp_obj_new_fun_viper(mp_uint_t n_args, void *fun_data, mp_uint_t type_sig) {
mp_obj_fun_viper_t *o = m_new_obj(mp_obj_fun_viper_t);
o->base.type = &mp_type_fun_viper;
o->n_args = n_args;
o->fun_data = fun_data;
o->type_sig = type_sig;
return o;
}
#endif // MICROPY_EMIT_NATIVE
/******************************************************************************/
/* inline assembler functions */
#if MICROPY_EMIT_INLINE_THUMB
typedef struct _mp_obj_fun_asm_t {
mp_obj_base_t base;
mp_uint_t n_args;
void *fun_data; // GC must be able to trace this pointer
} mp_obj_fun_asm_t;
typedef mp_uint_t (*inline_asm_fun_0_t)(void);
typedef mp_uint_t (*inline_asm_fun_1_t)(mp_uint_t);
typedef mp_uint_t (*inline_asm_fun_2_t)(mp_uint_t, mp_uint_t);
typedef mp_uint_t (*inline_asm_fun_3_t)(mp_uint_t, mp_uint_t, mp_uint_t);
// convert a Micro Python object to a sensible value for inline asm
STATIC mp_uint_t convert_obj_for_inline_asm(mp_obj_t obj) {
// TODO for byte_array, pass pointer to the array
if (MP_OBJ_IS_SMALL_INT(obj)) {
return MP_OBJ_SMALL_INT_VALUE(obj);
} else if (obj == mp_const_none) {
return 0;
} else if (obj == mp_const_false) {
return 0;
} else if (obj == mp_const_true) {
return 1;
} else if (MP_OBJ_IS_TYPE(obj, &mp_type_int)) {
return mp_obj_int_get_truncated(obj);
} else if (MP_OBJ_IS_STR(obj)) {
// pointer to the string (it's probably constant though!)
mp_uint_t l;
return (mp_uint_t)mp_obj_str_get_data(obj, &l);
} else {
mp_obj_type_t *type = mp_obj_get_type(obj);
if (0) {
#if MICROPY_PY_BUILTINS_FLOAT
} else if (type == &mp_type_float) {
// convert float to int (could also pass in float registers)
return (mp_int_t)mp_obj_float_get(obj);
#endif
} else if (type == &mp_type_tuple) {
// pointer to start of tuple (could pass length, but then could use len(x) for that)
mp_uint_t len;
mp_obj_t *items;
mp_obj_tuple_get(obj, &len, &items);
return (mp_uint_t)items;
} else if (type == &mp_type_list) {
// pointer to start of list (could pass length, but then could use len(x) for that)
mp_uint_t len;
mp_obj_t *items;
mp_obj_list_get(obj, &len, &items);
return (mp_uint_t)items;
} else {
mp_buffer_info_t bufinfo;
if (mp_get_buffer(obj, &bufinfo, MP_BUFFER_WRITE)) {
// supports the buffer protocol, return a pointer to the data
return (mp_uint_t)bufinfo.buf;
} else {
// just pass along a pointer to the object
return (mp_uint_t)obj;
}
}
}
}
// convert a return value from inline asm to a sensible Micro Python object
STATIC mp_obj_t convert_val_from_inline_asm(mp_uint_t val) {
return MP_OBJ_NEW_SMALL_INT(val);
}
STATIC mp_obj_t fun_asm_call(mp_obj_t self_in, mp_uint_t n_args, mp_uint_t n_kw, const mp_obj_t *args) {
mp_obj_fun_asm_t *self = self_in;
mp_arg_check_num(n_args, n_kw, self->n_args, self->n_args, false);
void *fun = MICROPY_MAKE_POINTER_CALLABLE(self->fun_data);
mp_uint_t ret;
if (n_args == 0) {
ret = ((inline_asm_fun_0_t)fun)();
} else if (n_args == 1) {
ret = ((inline_asm_fun_1_t)fun)(convert_obj_for_inline_asm(args[0]));
} else if (n_args == 2) {
ret = ((inline_asm_fun_2_t)fun)(convert_obj_for_inline_asm(args[0]), convert_obj_for_inline_asm(args[1]));
} else if (n_args == 3) {
ret = ((inline_asm_fun_3_t)fun)(convert_obj_for_inline_asm(args[0]), convert_obj_for_inline_asm(args[1]), convert_obj_for_inline_asm(args[2]));
} else {
assert(0);
ret = 0;
}
return convert_val_from_inline_asm(ret);
}
STATIC const mp_obj_type_t mp_type_fun_asm = {
{ &mp_type_type },
.name = MP_QSTR_function,
.call = fun_asm_call,
};
mp_obj_t mp_obj_new_fun_asm(mp_uint_t n_args, void *fun_data) {
mp_obj_fun_asm_t *o = m_new_obj(mp_obj_fun_asm_t);
o->base.type = &mp_type_fun_asm;
o->n_args = n_args;
o->fun_data = fun_data;
return o;
}
#endif // MICROPY_EMIT_INLINE_THUMB