micropython/extmod/nimble/nimble/nimble_npl_os.c

516 wiersze
17 KiB
C

/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2018-2019 Damien P. George
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <stdio.h>
#include "py/mphal.h"
#include "py/runtime.h"
#include "nimble/ble.h"
#include "nimble/nimble_npl.h"
#include "extmod/nimble/hal/hal_uart.h"
#include "extmod/modbluetooth.h"
#include "extmod/nimble/modbluetooth_nimble.h"
#define DEBUG_OS_printf(...) // printf(__VA_ARGS__)
#define DEBUG_MALLOC_printf(...) // printf(__VA_ARGS__)
#define DEBUG_EVENT_printf(...) // printf(__VA_ARGS__)
#define DEBUG_MUTEX_printf(...) // printf(__VA_ARGS__)
#define DEBUG_SEM_printf(...) // printf(__VA_ARGS__)
#define DEBUG_CALLOUT_printf(...) // printf(__VA_ARGS__)
#define DEBUG_TIME_printf(...) // printf(__VA_ARGS__)
#define DEBUG_CRIT_printf(...) // printf(__VA_ARGS__)
bool ble_npl_os_started(void) {
DEBUG_OS_printf("ble_npl_os_started\n");
return true;
}
void *ble_npl_get_current_task_id(void) {
DEBUG_OS_printf("ble_npl_get_current_task_id\n");
return NULL;
}
/******************************************************************************/
// malloc
// Maintain a linked list of heap memory that we've passed to Nimble,
// discoverable via the bluetooth_nimble_memory root pointer.
typedef struct _mp_bluetooth_nimble_malloc_t {
struct _mp_bluetooth_nimble_malloc_t *prev;
struct _mp_bluetooth_nimble_malloc_t *next;
size_t size;
uint8_t data[];
} mp_bluetooth_nimble_malloc_t;
// TODO: This is duplicated from mbedtls. Perhaps make this a generic feature?
STATIC void *m_malloc_bluetooth(size_t size) {
size += sizeof(mp_bluetooth_nimble_malloc_t);
mp_bluetooth_nimble_malloc_t *alloc = m_malloc0(size);
alloc->size = size;
alloc->next = MP_STATE_PORT(bluetooth_nimble_memory);
if (alloc->next) {
alloc->next->prev = alloc;
}
MP_STATE_PORT(bluetooth_nimble_memory) = alloc;
return alloc->data;
}
STATIC mp_bluetooth_nimble_malloc_t* get_nimble_malloc(void *ptr) {
return (mp_bluetooth_nimble_malloc_t*)((uintptr_t)ptr - sizeof(mp_bluetooth_nimble_malloc_t));
}
STATIC void m_free_bluetooth(void *ptr) {
mp_bluetooth_nimble_malloc_t *alloc = get_nimble_malloc(ptr);
if (alloc->next) {
alloc->next->prev = alloc->prev;
}
if (alloc->prev) {
alloc->prev->next = alloc->next;
} else {
MP_STATE_PORT(bluetooth_nimble_memory) = NULL;
}
m_free(alloc
#if MICROPY_MALLOC_USES_ALLOCATED_SIZE
, alloc->size
#endif
);
}
// Check if a nimble ptr is tracked.
// If it isn't, that means that it's from a previous soft-reset cycle.
STATIC bool is_valid_nimble_malloc(void *ptr) {
DEBUG_MALLOC_printf("NIMBLE is_valid_nimble_malloc(%p)\n", ptr);
mp_bluetooth_nimble_malloc_t *alloc = MP_STATE_PORT(bluetooth_nimble_memory);
while (alloc) {
DEBUG_MALLOC_printf("NIMBLE checking: %p\n", alloc->data);
if (alloc->data == ptr) {
return true;
}
alloc = alloc->next;
}
return false;
}
void *nimble_malloc(size_t size) {
DEBUG_MALLOC_printf("NIMBLE malloc(%u)\n", (uint)size);
void* ptr = m_malloc_bluetooth(size);
DEBUG_MALLOC_printf(" --> %p\n", ptr);
return ptr;
}
// Only free if it's still a valid pointer.
void nimble_free(void *ptr) {
DEBUG_MALLOC_printf("NIMBLE free(%p)\n", ptr);
if (ptr) {
// After a stack re-init, NimBLE has variables in BSS that might be
// still pointing to old allocations from a previous init. We can't do
// anything about this (e.g. ble_gatts_free_mem is private). But we
// can identify that this is a non-null, invalid alloc because it
// won't be in our list, so ignore it because it is effectively free'd
// anyway (it's not referenced by anything the GC can find).
if (is_valid_nimble_malloc(ptr)) {
m_free_bluetooth(ptr);
}
}
}
// Only realloc if it's still a valid pointer. Otherwise just malloc.
void *nimble_realloc(void *ptr, size_t new_size) {
DEBUG_MALLOC_printf("NIMBLE realloc(%p, %u)\n", ptr, (uint)new_size);
if (!ptr) {
return nimble_malloc(new_size);
}
assert(is_valid_nimble_malloc(ptr));
// Existing alloc is big enough.
mp_bluetooth_nimble_malloc_t *alloc = get_nimble_malloc(ptr);
size_t old_size = alloc->size - sizeof(mp_bluetooth_nimble_malloc_t);
if (old_size >= new_size) {
return ptr;
}
// Allocate a new, larger region.
void *ptr2 = m_malloc_bluetooth(new_size);
// Copy old, smaller region into new region.
memcpy(ptr2, ptr, old_size);
m_free_bluetooth(ptr);
DEBUG_MALLOC_printf(" --> %p\n", ptr2);
return ptr2;
}
// No-op implementation (only used by NimBLE logging).
int nimble_sprintf(char *str, const char *fmt, ...) {
str[0] = 0;
return 0;
}
/******************************************************************************/
// EVENTQ
struct ble_npl_eventq *global_eventq = NULL;
void mp_bluetooth_nimble_os_eventq_run_all(void) {
for (struct ble_npl_eventq *evq = global_eventq; evq != NULL; evq = evq->nextq) {
int n = 0;
while (evq->head != NULL && mp_bluetooth_nimble_ble_state > MP_BLUETOOTH_NIMBLE_BLE_STATE_OFF) {
struct ble_npl_event *ev = evq->head;
evq->head = ev->next;
if (ev->next) {
ev->next->prev = NULL;
ev->next = NULL;
}
ev->prev = NULL;
DEBUG_EVENT_printf("event_run(%p)\n", ev);
ev->fn(ev);
DEBUG_EVENT_printf("event_run(%p) done\n", ev);
if (++n > 3) {
// Limit to running 3 tasks per queue.
// Some tasks (such as reset) can enqueue themselves
// making this an infinite loop (while in PENDSV).
break;
}
}
}
}
void ble_npl_eventq_init(struct ble_npl_eventq *evq) {
DEBUG_EVENT_printf("ble_npl_eventq_init(%p)\n", evq);
evq->head = NULL;
struct ble_npl_eventq **evq2;
for (evq2 = &global_eventq; *evq2 != NULL; evq2 = &(*evq2)->nextq) {
}
*evq2 = evq;
evq->nextq = NULL;
}
void ble_npl_eventq_put(struct ble_npl_eventq *evq, struct ble_npl_event *ev) {
DEBUG_EVENT_printf("ble_npl_eventq_put(%p, %p (%p, %p))\n", evq, ev, ev->fn, ev->arg);
ev->next = NULL;
if (evq->head == NULL) {
evq->head = ev;
ev->prev = NULL;
} else {
struct ble_npl_event *ev2 = evq->head;
while (true) {
if (ev2 == ev) {
DEBUG_EVENT_printf(" --> already in queue\n");
return;
}
if (ev2->next == NULL) {
break;
}
DEBUG_EVENT_printf(" --> %p\n", ev2->next);
ev2 = ev2->next;
}
ev2->next = ev;
ev->prev = ev2;
}
}
void ble_npl_event_init(struct ble_npl_event *ev, ble_npl_event_fn *fn, void *arg) {
DEBUG_EVENT_printf("ble_npl_event_init(%p, %p, %p)\n", ev, fn, arg);
ev->fn = fn;
ev->arg = arg;
ev->next = NULL;
}
void *ble_npl_event_get_arg(struct ble_npl_event *ev) {
DEBUG_EVENT_printf("ble_npl_event_get_arg(%p) -> %p\n", ev, ev->arg);
return ev->arg;
}
void ble_npl_event_set_arg(struct ble_npl_event *ev, void *arg) {
DEBUG_EVENT_printf("ble_npl_event_set_arg(%p, %p)\n", ev, arg);
ev->arg = arg;
}
/******************************************************************************/
// MUTEX
// This is what MICROPY_BEGIN_ATOMIC_SECTION returns on Unix (i.e. we don't
// need to preserve the atomic state to unlock).
#define ATOMIC_STATE_MUTEX_NOT_HELD 0xffffffff
ble_npl_error_t ble_npl_mutex_init(struct ble_npl_mutex *mu) {
DEBUG_MUTEX_printf("ble_npl_mutex_init(%p)\n", mu);
mu->locked = 0;
mu->atomic_state = ATOMIC_STATE_MUTEX_NOT_HELD;
return BLE_NPL_OK;
}
ble_npl_error_t ble_npl_mutex_pend(struct ble_npl_mutex *mu, ble_npl_time_t timeout) {
DEBUG_MUTEX_printf("ble_npl_mutex_pend(%p, %u) locked=%u irq=%d\n", mu, (uint)timeout, (uint)mu->locked);
// This is a recursive mutex which we implement on top of the IRQ priority
// scheme. Unfortunately we have a single piece of global storage, where
// enter/exit critical needs an "atomic state".
// There are two different acquirers, either running in a VM thread (i.e.
// a direct Python call into NimBLE), or in the NimBLE task (i.e. polling
// or UART RX).
// On STM32 the NimBLE task runs in PENDSV, so cannot be interrupted by a VM thread.
// Therefore we only need to ensure that a VM thread that acquires a currently-unlocked mutex
// now raises the priority (thus preventing context switches to other VM threads and
// the PENDSV irq). If the mutex is already locked, then it must have been acquired
// by us.
// On Unix, the critical section is completely recursive and doesn't require us to manage
// state so we just acquire and release every time.
// TODO: The "volatile" on locked/atomic_state isn't enough to protect against memory re-ordering.
// First acquirer of this mutex always enters the critical section, unless
// we're on Unix where it happens every time.
if (mu->atomic_state == ATOMIC_STATE_MUTEX_NOT_HELD) {
mu->atomic_state = mp_bluetooth_nimble_hci_uart_enter_critical();
}
++mu->locked;
return BLE_NPL_OK;
}
ble_npl_error_t ble_npl_mutex_release(struct ble_npl_mutex *mu) {
DEBUG_MUTEX_printf("ble_npl_mutex_release(%p) locked=%u irq=%d\n", mu, (uint)mu->locked);
assert(mu->locked > 0);
--mu->locked;
// Only exit the critical section for the final release, unless we're on Unix.
if (mu->locked == 0 || mu->atomic_state == ATOMIC_STATE_MUTEX_NOT_HELD) {
mp_bluetooth_nimble_hci_uart_exit_critical(mu->atomic_state);
mu->atomic_state = ATOMIC_STATE_MUTEX_NOT_HELD;
}
return BLE_NPL_OK;
}
/******************************************************************************/
// SEM
ble_npl_error_t ble_npl_sem_init(struct ble_npl_sem *sem, uint16_t tokens) {
DEBUG_SEM_printf("ble_npl_sem_init(%p, %u)\n", sem, (uint)tokens);
sem->count = tokens;
return BLE_NPL_OK;
}
ble_npl_error_t ble_npl_sem_pend(struct ble_npl_sem *sem, ble_npl_time_t timeout) {
DEBUG_SEM_printf("ble_npl_sem_pend(%p, %u) count=%u\n", sem, (uint)timeout, (uint)sem->count);
// This is called by NimBLE to synchronously wait for an HCI ACK. The
// corresponding ble_npl_sem_release is called directly by the UART rx
// handler (i.e. hal_uart_rx_cb in extmod/nimble/hal/hal_uart.c).
// So this implementation just polls the UART until either the semaphore
// is released, or the timeout occurs.
if (sem->count == 0) {
uint32_t t0 = mp_hal_ticks_ms();
while (sem->count == 0 && mp_hal_ticks_ms() - t0 < timeout) {
// This can be called either from code running in NimBLE's "task"
// (i.e. PENDSV) or directly by application code, so for the
// latter case, prevent the "task" from running while we poll the
// UART directly.
MICROPY_PY_BLUETOOTH_ENTER
mp_bluetooth_nimble_hci_uart_process();
MICROPY_PY_BLUETOOTH_EXIT
if (sem->count != 0) {
break;
}
// Because we're polling, might as well wait for a UART IRQ indicating
// more data available.
mp_bluetooth_nimble_hci_uart_wfi();
}
if (sem->count == 0) {
DEBUG_SEM_printf("ble_npl_sem_pend: semaphore timeout\n");
return BLE_NPL_TIMEOUT;
}
DEBUG_SEM_printf("ble_npl_sem_pend: acquired in %u ms\n", (int)(mp_hal_ticks_ms() - t0));
}
sem->count -= 1;
return BLE_NPL_OK;
}
ble_npl_error_t ble_npl_sem_release(struct ble_npl_sem *sem) {
DEBUG_SEM_printf("ble_npl_sem_release(%p)\n", sem);
sem->count += 1;
return BLE_NPL_OK;
}
uint16_t ble_npl_sem_get_count(struct ble_npl_sem *sem) {
DEBUG_SEM_printf("ble_npl_sem_get_count(%p)\n", sem);
return sem->count;
}
/******************************************************************************/
// CALLOUT
static struct ble_npl_callout *global_callout = NULL;
void mp_bluetooth_nimble_os_callout_process(void) {
uint32_t tnow = mp_hal_ticks_ms();
for (struct ble_npl_callout *c = global_callout; c != NULL; c = c->nextc) {
if (!c->active) {
continue;
}
if ((int32_t)(tnow - c->ticks) >= 0) {
DEBUG_CALLOUT_printf("callout_run(%p) tnow=%u ticks=%u evq=%p\n", c, (uint)tnow, (uint)c->ticks, c->evq);
c->active = false;
if (c->evq) {
ble_npl_eventq_put(c->evq, &c->ev);
} else {
c->ev.fn(&c->ev);
}
DEBUG_CALLOUT_printf("callout_run(%p) done\n", c);
}
}
}
void ble_npl_callout_init(struct ble_npl_callout *c, struct ble_npl_eventq *evq, ble_npl_event_fn *ev_cb, void *ev_arg) {
DEBUG_CALLOUT_printf("ble_npl_callout_init(%p, %p, %p, %p)\n", c, evq, ev_cb, ev_arg);
c->active = false;
c->ticks = 0;
c->evq = evq;
ble_npl_event_init(&c->ev, ev_cb, ev_arg);
struct ble_npl_callout **c2;
for (c2 = &global_callout; *c2 != NULL; c2 = &(*c2)->nextc) {
if (c == *c2) {
// callout already in linked list so don't link it in again
return;
}
}
*c2 = c;
c->nextc = NULL;
}
ble_npl_error_t ble_npl_callout_reset(struct ble_npl_callout *c, ble_npl_time_t ticks) {
DEBUG_CALLOUT_printf("ble_npl_callout_reset(%p, %u) tnow=%u\n", c, (uint)ticks, (uint)mp_hal_ticks_ms());
c->active = true;
c->ticks = ble_npl_time_get() + ticks;
return BLE_NPL_OK;
}
void ble_npl_callout_stop(struct ble_npl_callout *c) {
DEBUG_CALLOUT_printf("ble_npl_callout_stop(%p)\n", c);
c->active = false;
}
bool ble_npl_callout_is_active(struct ble_npl_callout *c) {
DEBUG_CALLOUT_printf("ble_npl_callout_is_active(%p)\n", c);
return c->active;
}
ble_npl_time_t ble_npl_callout_get_ticks(struct ble_npl_callout *c) {
DEBUG_CALLOUT_printf("ble_npl_callout_get_ticks(%p)\n", c);
return c->ticks;
}
ble_npl_time_t ble_npl_callout_remaining_ticks(struct ble_npl_callout *c, ble_npl_time_t now) {
DEBUG_CALLOUT_printf("ble_npl_callout_remaining_ticks(%p, %u)\n", c, (uint)now);
if (c->ticks > now) {
return c->ticks - now;
} else {
return 0;
}
}
void *ble_npl_callout_get_arg(struct ble_npl_callout *c) {
DEBUG_CALLOUT_printf("ble_npl_callout_get_arg(%p)\n", c);
return ble_npl_event_get_arg(&c->ev);
}
void ble_npl_callout_set_arg(struct ble_npl_callout *c, void *arg) {
DEBUG_CALLOUT_printf("ble_npl_callout_set_arg(%p, %p)\n", c, arg);
ble_npl_event_set_arg(&c->ev, arg);
}
/******************************************************************************/
// TIME
uint32_t ble_npl_time_get(void) {
DEBUG_TIME_printf("ble_npl_time_get -> %u\n", (uint)mp_hal_ticks_ms());
return mp_hal_ticks_ms();
}
ble_npl_error_t ble_npl_time_ms_to_ticks(uint32_t ms, ble_npl_time_t *out_ticks) {
DEBUG_TIME_printf("ble_npl_time_ms_to_ticks(%u)\n", (uint)ms);
*out_ticks = ms;
return BLE_NPL_OK;
}
ble_npl_time_t ble_npl_time_ms_to_ticks32(uint32_t ms) {
DEBUG_TIME_printf("ble_npl_time_ms_to_ticks32(%u)\n", (uint)ms);
return ms;
}
uint32_t ble_npl_time_ticks_to_ms32(ble_npl_time_t ticks) {
DEBUG_TIME_printf("ble_npl_time_ticks_to_ms32(%u)\n", (uint)ticks);
return ticks;
}
void ble_npl_time_delay(ble_npl_time_t ticks) {
mp_hal_delay_ms(ticks + 1);
}
/******************************************************************************/
// CRITICAL
// This is used anywhere NimBLE modifies global data structures.
// We need to protect between:
// - A MicroPython VM thread.
// - The NimBLE "task" (e.g. PENDSV on STM32, pthread on Unix).
// On STM32, by disabling PENDSV, we ensure that either:
// - If we're in the NimBLE task, we're exclusive anyway.
// - If we're in a VM thread, we can't be interrupted by the NimBLE task, or switched to another thread.
// On Unix, there's a global mutex.
// TODO: Both ports currently use MICROPY_PY_BLUETOOTH_ENTER in their implementation,
// maybe this doesn't need to be port-specific?
uint32_t ble_npl_hw_enter_critical(void) {
DEBUG_CRIT_printf("ble_npl_hw_enter_critical()\n");
return mp_bluetooth_nimble_hci_uart_enter_critical();
}
void ble_npl_hw_exit_critical(uint32_t ctx) {
DEBUG_CRIT_printf("ble_npl_hw_exit_critical(%u)\n", (uint)ctx);
mp_bluetooth_nimble_hci_uart_exit_critical(ctx);
}