/* * This file is part of the MicroPython project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2016 Linaro Ltd. * Copyright (c) 2019 Paul Sokolovsky * Copyright (c) 2023 Damien P. George * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "py/mpconfig.h" #if MICROPY_PY_SSL && MICROPY_SSL_MBEDTLS #include #include #include // needed because mp_is_nonblocking_error uses system error codes #include "py/runtime.h" #include "py/stream.h" #include "py/objstr.h" #include "py/reader.h" #include "extmod/vfs.h" // mbedtls_time_t #include "mbedtls/platform.h" #include "mbedtls/ssl.h" #include "mbedtls/x509_crt.h" #include "mbedtls/pk.h" #include "mbedtls/entropy.h" #include "mbedtls/ctr_drbg.h" #include "mbedtls/debug.h" #include "mbedtls/error.h" #if MBEDTLS_VERSION_NUMBER >= 0x03000000 #include "mbedtls/build_info.h" #else #include "mbedtls/version.h" #endif #define MP_STREAM_POLL_RDWR (MP_STREAM_POLL_RD | MP_STREAM_POLL_WR) // This corresponds to an SSLContext object. typedef struct _mp_obj_ssl_context_t { mp_obj_base_t base; mbedtls_entropy_context entropy; mbedtls_ctr_drbg_context ctr_drbg; mbedtls_ssl_config conf; mbedtls_x509_crt cacert; mbedtls_x509_crt cert; mbedtls_pk_context pkey; int authmode; int *ciphersuites; mp_obj_t handler; } mp_obj_ssl_context_t; // This corresponds to an SSLSocket object. typedef struct _mp_obj_ssl_socket_t { mp_obj_base_t base; mp_obj_ssl_context_t *ssl_context; mp_obj_t sock; mbedtls_ssl_context ssl; uintptr_t poll_mask; // Indicates which read or write operations the protocol needs next int last_error; // The last error code, if any } mp_obj_ssl_socket_t; static const mp_obj_type_t ssl_context_type; static const mp_obj_type_t ssl_socket_type; static const MP_DEFINE_STR_OBJ(mbedtls_version_obj, MBEDTLS_VERSION_STRING_FULL); static mp_obj_t ssl_socket_make_new(mp_obj_ssl_context_t *ssl_context, mp_obj_t sock, bool server_side, bool do_handshake_on_connect, mp_obj_t server_hostname); /******************************************************************************/ // Helper functions. #ifdef MBEDTLS_DEBUG_C static void mbedtls_debug(void *ctx, int level, const char *file, int line, const char *str) { (void)ctx; (void)level; mp_printf(&mp_plat_print, "DBG:%s:%04d: %s\n", file, line, str); } #endif static NORETURN void mbedtls_raise_error(int err) { // Handle special cases. if (err == MBEDTLS_ERR_SSL_ALLOC_FAILED) { mp_raise_OSError(MP_ENOMEM); } else if (err == MBEDTLS_ERR_PK_BAD_INPUT_DATA) { mp_raise_ValueError(MP_ERROR_TEXT("invalid key")); } else if (err == MBEDTLS_ERR_X509_BAD_INPUT_DATA) { mp_raise_ValueError(MP_ERROR_TEXT("invalid cert")); } // _mbedtls_ssl_send and _mbedtls_ssl_recv (below) turn positive error codes from the // underlying socket into negative codes to pass them through mbedtls. Here we turn them // positive again so they get interpreted as the OSError they really are. The // cut-off of -256 is a bit hacky, sigh. if (err < 0 && err > -256) { mp_raise_OSError(-err); } #if defined(MBEDTLS_ERROR_C) // Including mbedtls_strerror takes about 1.5KB due to the error strings. // MBEDTLS_ERROR_C is the define used by mbedtls to conditionally include mbedtls_strerror. // It is set/unset in the MBEDTLS_CONFIG_FILE which is defined in the Makefile. // Try to allocate memory for the message #define ERR_STR_MAX 80 // mbedtls_strerror truncates if it doesn't fit mp_obj_str_t *o_str = m_new_obj_maybe(mp_obj_str_t); byte *o_str_buf = m_new_maybe(byte, ERR_STR_MAX); if (o_str == NULL || o_str_buf == NULL) { mp_raise_OSError(err); } // print the error message into the allocated buffer mbedtls_strerror(err, (char *)o_str_buf, ERR_STR_MAX); size_t len = strlen((char *)o_str_buf); // Put the exception object together o_str->base.type = &mp_type_str; o_str->data = o_str_buf; o_str->len = len; o_str->hash = qstr_compute_hash(o_str->data, o_str->len); // raise mp_obj_t args[2] = { MP_OBJ_NEW_SMALL_INT(err), MP_OBJ_FROM_PTR(o_str)}; nlr_raise(mp_obj_exception_make_new(&mp_type_OSError, 2, 0, args)); #else // mbedtls is compiled without error strings so we simply return the err number mp_raise_OSError(err); // err is typically a large negative number #endif } static void ssl_check_async_handshake_failure(mp_obj_ssl_socket_t *sslsock, int *errcode) { if ( #if MBEDTLS_VERSION_NUMBER >= 0x03000000 (*errcode < 0) && (mbedtls_ssl_is_handshake_over(&sslsock->ssl) == 0) && (*errcode != MBEDTLS_ERR_SSL_CONN_EOF) #else (*errcode < 0) && (*errcode != MBEDTLS_ERR_SSL_CONN_EOF) #endif ) { // Asynchronous handshake is done by mbdetls_ssl_read/write. If the return code is // MBEDTLS_ERR_XX (i.e < 0) and the handshake is not done due to a handshake failure, // then notify peer with proper error code and raise local error with mbedtls_raise_error. if (*errcode == MBEDTLS_ERR_SSL_NO_CLIENT_CERTIFICATE) { // Check if TLSv1.3 and use proper alert for this case (to be implemented) // uint8_t alert = MBEDTLS_SSL_ALERT_MSG_CERT_REQUIRED; tlsv1.3 // uint8_t alert = MBEDTLS_SSL_ALERT_MSG_HANDSHAKE_FAILURE; tlsv1.2 mbedtls_ssl_send_alert_message(&sslsock->ssl, MBEDTLS_SSL_ALERT_LEVEL_FATAL, MBEDTLS_SSL_ALERT_MSG_HANDSHAKE_FAILURE); } if (*errcode == MBEDTLS_ERR_X509_CERT_VERIFY_FAILED) { // The certificate may have been rejected for several reasons. char xcbuf[256]; uint32_t flags = mbedtls_ssl_get_verify_result(&sslsock->ssl); int ret = mbedtls_x509_crt_verify_info(xcbuf, sizeof(xcbuf), "\n", flags); // The length of the string written (not including the terminated nul byte), // or a negative err code. if (ret > 0) { sslsock->sock = MP_OBJ_NULL; mbedtls_ssl_free(&sslsock->ssl); mp_raise_msg_varg(&mp_type_ValueError, MP_ERROR_TEXT("%s"), xcbuf); } } sslsock->sock = MP_OBJ_NULL; mbedtls_ssl_free(&sslsock->ssl); mbedtls_raise_error(*errcode); } } static int ssl_sock_cert_verify(void *ptr, mbedtls_x509_crt *crt, int depth, uint32_t *flags) { mp_obj_ssl_context_t *o = ptr; if (o->handler == mp_const_none) { return 0; } mp_obj_array_t cert; mp_obj_memoryview_init(&cert, 'B', 0, crt->raw.len, crt->raw.p); return mp_obj_get_int(mp_call_function_2(o->handler, MP_OBJ_FROM_PTR(&cert), MP_OBJ_NEW_SMALL_INT(depth))); } /******************************************************************************/ // SSLContext type. static mp_obj_t ssl_context_make_new(const mp_obj_type_t *type_in, size_t n_args, size_t n_kw, const mp_obj_t *args) { mp_arg_check_num(n_args, n_kw, 1, 1, false); // This is the "protocol" argument. mp_int_t endpoint = mp_obj_get_int(args[0]); // Create SSLContext object. #if MICROPY_PY_SSL_FINALISER mp_obj_ssl_context_t *self = mp_obj_malloc_with_finaliser(mp_obj_ssl_context_t, type_in); #else mp_obj_ssl_context_t *self = mp_obj_malloc(mp_obj_ssl_context_t, type_in); #endif // Initialise mbedTLS state. mbedtls_ssl_config_init(&self->conf); mbedtls_entropy_init(&self->entropy); mbedtls_ctr_drbg_init(&self->ctr_drbg); mbedtls_x509_crt_init(&self->cacert); mbedtls_x509_crt_init(&self->cert); mbedtls_pk_init(&self->pkey); self->ciphersuites = NULL; self->handler = mp_const_none; #ifdef MBEDTLS_DEBUG_C // Debug level (0-4) 1=warning, 2=info, 3=debug, 4=verbose mbedtls_debug_set_threshold(3); #endif // Whenever the PSA interface is used (if MBEDTLS_PSA_CRYPTO), psa_crypto_init() needs to be called before any TLS related operations. // TLSv1.3 depends on the PSA interface, TLSv1.2 only uses the PSA stack if MBEDTLS_USE_PSA_CRYPTO is defined. #if defined(MBEDTLS_SSL_PROTO_TLS1_3) || defined(MBEDTLS_USE_PSA_CRYPTO) psa_crypto_init(); #endif const byte seed[] = "upy"; int ret = mbedtls_ctr_drbg_seed(&self->ctr_drbg, mbedtls_entropy_func, &self->entropy, seed, sizeof(seed)); if (ret != 0) { mbedtls_raise_error(ret); } ret = mbedtls_ssl_config_defaults(&self->conf, endpoint, MBEDTLS_SSL_TRANSPORT_STREAM, MBEDTLS_SSL_PRESET_DEFAULT); if (ret != 0) { mbedtls_raise_error(ret); } if (endpoint == MBEDTLS_SSL_IS_CLIENT) { self->authmode = MBEDTLS_SSL_VERIFY_REQUIRED; } else { self->authmode = MBEDTLS_SSL_VERIFY_NONE; } mbedtls_ssl_conf_authmode(&self->conf, self->authmode); mbedtls_ssl_conf_verify(&self->conf, &ssl_sock_cert_verify, self); mbedtls_ssl_conf_rng(&self->conf, mbedtls_ctr_drbg_random, &self->ctr_drbg); #ifdef MBEDTLS_DEBUG_C mbedtls_ssl_conf_dbg(&self->conf, mbedtls_debug, NULL); #endif return MP_OBJ_FROM_PTR(self); } static void ssl_context_attr(mp_obj_t self_in, qstr attr, mp_obj_t *dest) { mp_obj_ssl_context_t *self = MP_OBJ_TO_PTR(self_in); if (dest[0] == MP_OBJ_NULL) { // Load attribute. if (attr == MP_QSTR_verify_mode) { dest[0] = MP_OBJ_NEW_SMALL_INT(self->authmode); } else if (attr == MP_QSTR_verify_callback) { dest[0] = self->handler; } else { // Continue lookup in locals_dict. dest[1] = MP_OBJ_SENTINEL; } } else if (dest[1] != MP_OBJ_NULL) { // Store attribute. if (attr == MP_QSTR_verify_mode) { self->authmode = mp_obj_get_int(dest[1]); dest[0] = MP_OBJ_NULL; mbedtls_ssl_conf_authmode(&self->conf, self->authmode); } else if (attr == MP_QSTR_verify_callback) { dest[0] = MP_OBJ_NULL; self->handler = dest[1]; } } } #if MICROPY_PY_SSL_FINALISER static mp_obj_t ssl_context___del__(mp_obj_t self_in) { mp_obj_ssl_context_t *self = MP_OBJ_TO_PTR(self_in); mbedtls_pk_free(&self->pkey); mbedtls_x509_crt_free(&self->cert); mbedtls_x509_crt_free(&self->cacert); mbedtls_ctr_drbg_free(&self->ctr_drbg); mbedtls_entropy_free(&self->entropy); mbedtls_ssl_config_free(&self->conf); return mp_const_none; } static MP_DEFINE_CONST_FUN_OBJ_1(ssl_context___del___obj, ssl_context___del__); #endif // SSLContext.get_ciphers() static mp_obj_t ssl_context_get_ciphers(mp_obj_t self_in) { mp_obj_t list = mp_obj_new_list(0, NULL); for (const int *cipher_list = mbedtls_ssl_list_ciphersuites(); *cipher_list; ++cipher_list) { const char *cipher_name = mbedtls_ssl_get_ciphersuite_name(*cipher_list); mp_obj_list_append(list, MP_OBJ_FROM_PTR(mp_obj_new_str(cipher_name, strlen(cipher_name)))); } return list; } static MP_DEFINE_CONST_FUN_OBJ_1(ssl_context_get_ciphers_obj, ssl_context_get_ciphers); // SSLContext.set_ciphers(ciphersuite) static mp_obj_t ssl_context_set_ciphers(mp_obj_t self_in, mp_obj_t ciphersuite) { mp_obj_ssl_context_t *ssl_context = MP_OBJ_TO_PTR(self_in); // Check that ciphersuite is a list or tuple. size_t len = 0; mp_obj_t *ciphers; mp_obj_get_array(ciphersuite, &len, &ciphers); if (len == 0) { mbedtls_raise_error(MBEDTLS_ERR_SSL_BAD_CONFIG); } // Parse list of ciphers. ssl_context->ciphersuites = m_new(int, len + 1); for (size_t i = 0; i < len; ++i) { const char *ciphername = mp_obj_str_get_str(ciphers[i]); const int id = mbedtls_ssl_get_ciphersuite_id(ciphername); if (id == 0) { mbedtls_raise_error(MBEDTLS_ERR_SSL_BAD_CONFIG); } ssl_context->ciphersuites[i] = id; } ssl_context->ciphersuites[len] = 0; // Configure ciphersuite. mbedtls_ssl_conf_ciphersuites(&ssl_context->conf, (const int *)ssl_context->ciphersuites); return mp_const_none; } static MP_DEFINE_CONST_FUN_OBJ_2(ssl_context_set_ciphers_obj, ssl_context_set_ciphers); static void ssl_context_load_key(mp_obj_ssl_context_t *self, mp_obj_t key_obj, mp_obj_t cert_obj) { size_t key_len; const byte *key = (const byte *)mp_obj_str_get_data(key_obj, &key_len); // len should include terminating null int ret; #if MBEDTLS_VERSION_NUMBER >= 0x03000000 ret = mbedtls_pk_parse_key(&self->pkey, key, key_len + 1, NULL, 0, mbedtls_ctr_drbg_random, &self->ctr_drbg); #else ret = mbedtls_pk_parse_key(&self->pkey, key, key_len + 1, NULL, 0); #endif if (ret != 0) { mbedtls_raise_error(MBEDTLS_ERR_PK_BAD_INPUT_DATA); // use general error for all key errors } size_t cert_len; const byte *cert = (const byte *)mp_obj_str_get_data(cert_obj, &cert_len); // len should include terminating null ret = mbedtls_x509_crt_parse(&self->cert, cert, cert_len + 1); if (ret != 0) { mbedtls_raise_error(MBEDTLS_ERR_X509_BAD_INPUT_DATA); // use general error for all cert errors } ret = mbedtls_ssl_conf_own_cert(&self->conf, &self->cert, &self->pkey); if (ret != 0) { mbedtls_raise_error(ret); } } // SSLContext.load_cert_chain(certfile, keyfile) static mp_obj_t ssl_context_load_cert_chain(mp_obj_t self_in, mp_obj_t cert, mp_obj_t pkey) { mp_obj_ssl_context_t *self = MP_OBJ_TO_PTR(self_in); ssl_context_load_key(self, pkey, cert); return mp_const_none; } static MP_DEFINE_CONST_FUN_OBJ_3(ssl_context_load_cert_chain_obj, ssl_context_load_cert_chain); static void ssl_context_load_cadata(mp_obj_ssl_context_t *self, mp_obj_t cadata_obj) { size_t cacert_len; const byte *cacert = (const byte *)mp_obj_str_get_data(cadata_obj, &cacert_len); // len should include terminating null int ret = mbedtls_x509_crt_parse(&self->cacert, cacert, cacert_len + 1); if (ret != 0) { mbedtls_raise_error(MBEDTLS_ERR_X509_BAD_INPUT_DATA); // use general error for all cert errors } mbedtls_ssl_conf_ca_chain(&self->conf, &self->cacert, NULL); } // SSLContext.load_verify_locations(cadata) static mp_obj_t ssl_context_load_verify_locations(mp_obj_t self_in, mp_obj_t cadata) { mp_obj_ssl_context_t *self = MP_OBJ_TO_PTR(self_in); ssl_context_load_cadata(self, cadata); return mp_const_none; } static MP_DEFINE_CONST_FUN_OBJ_2(ssl_context_load_verify_locations_obj, ssl_context_load_verify_locations); static mp_obj_t ssl_context_wrap_socket(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) { enum { ARG_server_side, ARG_do_handshake_on_connect, ARG_server_hostname }; static const mp_arg_t allowed_args[] = { { MP_QSTR_server_side, MP_ARG_KW_ONLY | MP_ARG_BOOL, {.u_bool = false} }, { MP_QSTR_do_handshake_on_connect, MP_ARG_KW_ONLY | MP_ARG_BOOL, {.u_bool = true} }, { MP_QSTR_server_hostname, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_rom_obj = MP_ROM_NONE} }, }; // Parse arguments. mp_obj_ssl_context_t *self = MP_OBJ_TO_PTR(pos_args[0]); mp_obj_t sock = pos_args[1]; mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)]; mp_arg_parse_all(n_args - 2, pos_args + 2, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args); // Create and return the new SSLSocket object. return ssl_socket_make_new(self, sock, args[ARG_server_side].u_bool, args[ARG_do_handshake_on_connect].u_bool, args[ARG_server_hostname].u_obj); } static MP_DEFINE_CONST_FUN_OBJ_KW(ssl_context_wrap_socket_obj, 2, ssl_context_wrap_socket); static const mp_rom_map_elem_t ssl_context_locals_dict_table[] = { #if MICROPY_PY_SSL_FINALISER { MP_ROM_QSTR(MP_QSTR___del__), MP_ROM_PTR(&ssl_context___del___obj) }, #endif { MP_ROM_QSTR(MP_QSTR_get_ciphers), MP_ROM_PTR(&ssl_context_get_ciphers_obj)}, { MP_ROM_QSTR(MP_QSTR_set_ciphers), MP_ROM_PTR(&ssl_context_set_ciphers_obj)}, { MP_ROM_QSTR(MP_QSTR_load_cert_chain), MP_ROM_PTR(&ssl_context_load_cert_chain_obj)}, { MP_ROM_QSTR(MP_QSTR_load_verify_locations), MP_ROM_PTR(&ssl_context_load_verify_locations_obj)}, { MP_ROM_QSTR(MP_QSTR_wrap_socket), MP_ROM_PTR(&ssl_context_wrap_socket_obj) }, }; static MP_DEFINE_CONST_DICT(ssl_context_locals_dict, ssl_context_locals_dict_table); static MP_DEFINE_CONST_OBJ_TYPE( ssl_context_type, MP_QSTR_SSLContext, MP_TYPE_FLAG_NONE, make_new, ssl_context_make_new, attr, ssl_context_attr, locals_dict, &ssl_context_locals_dict ); /******************************************************************************/ // SSLSocket type. static int _mbedtls_ssl_send(void *ctx, const byte *buf, size_t len) { mp_obj_t sock = *(mp_obj_t *)ctx; const mp_stream_p_t *sock_stream = mp_get_stream(sock); int err; mp_uint_t out_sz = sock_stream->write(sock, buf, len, &err); if (out_sz == MP_STREAM_ERROR) { if (mp_is_nonblocking_error(err)) { return MBEDTLS_ERR_SSL_WANT_WRITE; } return -err; // convert an MP_ERRNO to something mbedtls passes through as error } else { return out_sz; } } // _mbedtls_ssl_recv is called by mbedtls to receive bytes from the underlying socket static int _mbedtls_ssl_recv(void *ctx, byte *buf, size_t len) { mp_obj_t sock = *(mp_obj_t *)ctx; const mp_stream_p_t *sock_stream = mp_get_stream(sock); int err; mp_uint_t out_sz = sock_stream->read(sock, buf, len, &err); if (out_sz == MP_STREAM_ERROR) { if (mp_is_nonblocking_error(err)) { return MBEDTLS_ERR_SSL_WANT_READ; } return -err; } else { return out_sz; } } static mp_obj_t ssl_socket_make_new(mp_obj_ssl_context_t *ssl_context, mp_obj_t sock, bool server_side, bool do_handshake_on_connect, mp_obj_t server_hostname) { // Verify the socket object has the full stream protocol mp_get_stream_raise(sock, MP_STREAM_OP_READ | MP_STREAM_OP_WRITE | MP_STREAM_OP_IOCTL); #if MICROPY_PY_SSL_FINALISER mp_obj_ssl_socket_t *o = mp_obj_malloc_with_finaliser(mp_obj_ssl_socket_t, &ssl_socket_type); #else mp_obj_ssl_socket_t *o = mp_obj_malloc(mp_obj_ssl_socket_t, &ssl_socket_type); #endif o->ssl_context = ssl_context; o->sock = sock; o->poll_mask = 0; o->last_error = 0; int ret; uint32_t flags = 0; mbedtls_ssl_init(&o->ssl); ret = mbedtls_ssl_setup(&o->ssl, &ssl_context->conf); if (ret != 0) { goto cleanup; } if (server_hostname != mp_const_none) { const char *sni = mp_obj_str_get_str(server_hostname); ret = mbedtls_ssl_set_hostname(&o->ssl, sni); if (ret != 0) { goto cleanup; } } else if (ssl_context->authmode == MBEDTLS_SSL_VERIFY_REQUIRED && server_side == false) { o->sock = MP_OBJ_NULL; mbedtls_ssl_free(&o->ssl); mp_raise_ValueError(MP_ERROR_TEXT("CERT_REQUIRED requires server_hostname")); } mbedtls_ssl_set_bio(&o->ssl, &o->sock, _mbedtls_ssl_send, _mbedtls_ssl_recv, NULL); if (do_handshake_on_connect) { while ((ret = mbedtls_ssl_handshake(&o->ssl)) != 0) { if (ret != MBEDTLS_ERR_SSL_WANT_READ && ret != MBEDTLS_ERR_SSL_WANT_WRITE) { goto cleanup; } mp_event_wait_ms(1); } } return MP_OBJ_FROM_PTR(o); cleanup: if (ret == MBEDTLS_ERR_X509_CERT_VERIFY_FAILED) { flags = mbedtls_ssl_get_verify_result(&o->ssl); } o->sock = MP_OBJ_NULL; mbedtls_ssl_free(&o->ssl); if (ret == MBEDTLS_ERR_X509_CERT_VERIFY_FAILED) { char xcbuf[256]; int ret_info = mbedtls_x509_crt_verify_info(xcbuf, sizeof(xcbuf), "\n", flags); // The length of the string written (not including the terminated nul byte), // or a negative err code. if (ret_info > 0) { mp_raise_msg_varg(&mp_type_ValueError, MP_ERROR_TEXT("%s"), xcbuf); } } mbedtls_raise_error(ret); } #if defined(MBEDTLS_SSL_KEEP_PEER_CERTIFICATE) static mp_obj_t mod_ssl_getpeercert(mp_obj_t o_in, mp_obj_t binary_form) { mp_obj_ssl_socket_t *o = MP_OBJ_TO_PTR(o_in); if (!mp_obj_is_true(binary_form)) { mp_raise_NotImplementedError(NULL); } const mbedtls_x509_crt *peer_cert = mbedtls_ssl_get_peer_cert(&o->ssl); if (peer_cert == NULL) { return mp_const_none; } return mp_obj_new_bytes(peer_cert->raw.p, peer_cert->raw.len); } static MP_DEFINE_CONST_FUN_OBJ_2(mod_ssl_getpeercert_obj, mod_ssl_getpeercert); #endif static mp_obj_t mod_ssl_cipher(mp_obj_t o_in) { mp_obj_ssl_socket_t *o = MP_OBJ_TO_PTR(o_in); const char *cipher_suite = mbedtls_ssl_get_ciphersuite(&o->ssl); const char *tls_version = mbedtls_ssl_get_version(&o->ssl); mp_obj_t tuple[2] = {mp_obj_new_str(cipher_suite, strlen(cipher_suite)), mp_obj_new_str(tls_version, strlen(tls_version))}; return mp_obj_new_tuple(2, tuple); } static MP_DEFINE_CONST_FUN_OBJ_1(mod_ssl_cipher_obj, mod_ssl_cipher); static mp_uint_t socket_read(mp_obj_t o_in, void *buf, mp_uint_t size, int *errcode) { mp_obj_ssl_socket_t *o = MP_OBJ_TO_PTR(o_in); o->poll_mask = 0; if (o->last_error) { *errcode = o->last_error; return MP_STREAM_ERROR; } int ret = mbedtls_ssl_read(&o->ssl, buf, size); if (ret == MBEDTLS_ERR_SSL_PEER_CLOSE_NOTIFY) { // end of stream return 0; } if (ret >= 0) { return ret; } if (ret == MBEDTLS_ERR_SSL_WANT_READ) { ret = MP_EWOULDBLOCK; } else if (ret == MBEDTLS_ERR_SSL_WANT_WRITE) { // If handshake is not finished, read attempt may end up in protocol // wanting to write next handshake message. The same may happen with // renegotiation. ret = MP_EWOULDBLOCK; o->poll_mask = MP_STREAM_POLL_WR; #if defined(MBEDTLS_SSL_PROTO_TLS1_3) } else if (ret == MBEDTLS_ERR_SSL_RECEIVED_NEW_SESSION_TICKET) { // It appears a new session ticket being issued by the server right after // completed handshake is not uncommon and shouldn't be treated as fatal. // mbedtls itself states "This error code is experimental and may be // changed or removed without notice." ret = MP_EWOULDBLOCK; #endif } else { o->last_error = ret; } ssl_check_async_handshake_failure(o, &ret); *errcode = ret; return MP_STREAM_ERROR; } static mp_uint_t socket_write(mp_obj_t o_in, const void *buf, mp_uint_t size, int *errcode) { mp_obj_ssl_socket_t *o = MP_OBJ_TO_PTR(o_in); o->poll_mask = 0; if (o->last_error) { *errcode = o->last_error; return MP_STREAM_ERROR; } int ret = mbedtls_ssl_write(&o->ssl, buf, size); if (ret >= 0) { return ret; } if (ret == MBEDTLS_ERR_SSL_WANT_WRITE) { ret = MP_EWOULDBLOCK; } else if (ret == MBEDTLS_ERR_SSL_WANT_READ) { // If handshake is not finished, write attempt may end up in protocol // wanting to read next handshake message. The same may happen with // renegotiation. ret = MP_EWOULDBLOCK; o->poll_mask = MP_STREAM_POLL_RD; } else { o->last_error = ret; } ssl_check_async_handshake_failure(o, &ret); *errcode = ret; return MP_STREAM_ERROR; } static mp_obj_t socket_setblocking(mp_obj_t self_in, mp_obj_t flag_in) { mp_obj_ssl_socket_t *o = MP_OBJ_TO_PTR(self_in); mp_obj_t sock = o->sock; mp_obj_t dest[3]; mp_load_method(sock, MP_QSTR_setblocking, dest); dest[2] = flag_in; return mp_call_method_n_kw(1, 0, dest); } static MP_DEFINE_CONST_FUN_OBJ_2(socket_setblocking_obj, socket_setblocking); static mp_uint_t socket_ioctl(mp_obj_t o_in, mp_uint_t request, uintptr_t arg, int *errcode) { mp_obj_ssl_socket_t *self = MP_OBJ_TO_PTR(o_in); mp_uint_t ret = 0; uintptr_t saved_arg = 0; mp_obj_t sock = self->sock; if (request == MP_STREAM_CLOSE) { if (sock == MP_OBJ_NULL) { // Already closed socket, do nothing. return 0; } self->sock = MP_OBJ_NULL; mbedtls_ssl_free(&self->ssl); } else if (request == MP_STREAM_POLL) { if (sock == MP_OBJ_NULL || self->last_error != 0) { // Closed or error socket, return NVAL flag. return MP_STREAM_POLL_NVAL; } // If the library signaled us that it needs reading or writing, only check that direction, // but save what the caller asked because we need to restore it later if (self->poll_mask && (arg & MP_STREAM_POLL_RDWR)) { saved_arg = arg & MP_STREAM_POLL_RDWR; arg = (arg & ~saved_arg) | self->poll_mask; } // Take into account that the library might have buffered data already int has_pending = 0; if (arg & MP_STREAM_POLL_RD) { has_pending = mbedtls_ssl_check_pending(&self->ssl); if (has_pending) { ret |= MP_STREAM_POLL_RD; if (arg == MP_STREAM_POLL_RD) { // Shortcut if we only need to read and we have buffered data, no need to go to the underlying socket return MP_STREAM_POLL_RD; } } } } else { // Unsupported ioctl. *errcode = MP_EINVAL; return MP_STREAM_ERROR; } // Pass all requests down to the underlying socket ret |= mp_get_stream(sock)->ioctl(sock, request, arg, errcode); if (request == MP_STREAM_POLL) { // The direction the library needed is available, return a fake result to the caller so that // it reenters a read or a write to allow the handshake to progress if (ret & self->poll_mask) { ret |= saved_arg; } } return ret; } static const mp_rom_map_elem_t ssl_socket_locals_dict_table[] = { { MP_ROM_QSTR(MP_QSTR_read), MP_ROM_PTR(&mp_stream_read_obj) }, { MP_ROM_QSTR(MP_QSTR_readinto), MP_ROM_PTR(&mp_stream_readinto_obj) }, { MP_ROM_QSTR(MP_QSTR_readline), MP_ROM_PTR(&mp_stream_unbuffered_readline_obj) }, { MP_ROM_QSTR(MP_QSTR_write), MP_ROM_PTR(&mp_stream_write_obj) }, { MP_ROM_QSTR(MP_QSTR_setblocking), MP_ROM_PTR(&socket_setblocking_obj) }, { MP_ROM_QSTR(MP_QSTR_close), MP_ROM_PTR(&mp_stream_close_obj) }, #if MICROPY_PY_SSL_FINALISER { MP_ROM_QSTR(MP_QSTR___del__), MP_ROM_PTR(&mp_stream_close_obj) }, #endif #if MICROPY_UNIX_COVERAGE { MP_ROM_QSTR(MP_QSTR_ioctl), MP_ROM_PTR(&mp_stream_ioctl_obj) }, #endif #if defined(MBEDTLS_SSL_KEEP_PEER_CERTIFICATE) { MP_ROM_QSTR(MP_QSTR_getpeercert), MP_ROM_PTR(&mod_ssl_getpeercert_obj) }, #endif { MP_ROM_QSTR(MP_QSTR_cipher), MP_ROM_PTR(&mod_ssl_cipher_obj) }, }; static MP_DEFINE_CONST_DICT(ssl_socket_locals_dict, ssl_socket_locals_dict_table); static const mp_stream_p_t ssl_socket_stream_p = { .read = socket_read, .write = socket_write, .ioctl = socket_ioctl, }; static MP_DEFINE_CONST_OBJ_TYPE( ssl_socket_type, MP_QSTR_SSLSocket, MP_TYPE_FLAG_NONE, protocol, &ssl_socket_stream_p, locals_dict, &ssl_socket_locals_dict ); /******************************************************************************/ // ssl module. static const mp_rom_map_elem_t mp_module_tls_globals_table[] = { { MP_ROM_QSTR(MP_QSTR___name__), MP_ROM_QSTR(MP_QSTR_tls) }, // Classes. { MP_ROM_QSTR(MP_QSTR_SSLContext), MP_ROM_PTR(&ssl_context_type) }, // Constants. { MP_ROM_QSTR(MP_QSTR_MBEDTLS_VERSION), MP_ROM_PTR(&mbedtls_version_obj)}, { MP_ROM_QSTR(MP_QSTR_PROTOCOL_TLS_CLIENT), MP_ROM_INT(MBEDTLS_SSL_IS_CLIENT) }, { MP_ROM_QSTR(MP_QSTR_PROTOCOL_TLS_SERVER), MP_ROM_INT(MBEDTLS_SSL_IS_SERVER) }, { MP_ROM_QSTR(MP_QSTR_CERT_NONE), MP_ROM_INT(MBEDTLS_SSL_VERIFY_NONE) }, { MP_ROM_QSTR(MP_QSTR_CERT_OPTIONAL), MP_ROM_INT(MBEDTLS_SSL_VERIFY_OPTIONAL) }, { MP_ROM_QSTR(MP_QSTR_CERT_REQUIRED), MP_ROM_INT(MBEDTLS_SSL_VERIFY_REQUIRED) }, }; static MP_DEFINE_CONST_DICT(mp_module_tls_globals, mp_module_tls_globals_table); const mp_obj_module_t mp_module_tls = { .base = { &mp_type_module }, .globals = (mp_obj_dict_t *)&mp_module_tls_globals, }; MP_REGISTER_MODULE(MP_QSTR_tls, mp_module_tls); #endif // MICROPY_PY_SSL && MICROPY_SSL_MBEDTLS