/* * This file is part of the Micro Python project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2016-2021 Damien P. George * Copyright (c) 2018 Alan Dragomirecky * Copyright (c) 2020 Antoine Aubert * Copyright (c) 2021 Ihor Nehrutsa * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include #include "py/runtime.h" #include "py/mphal.h" #include "driver/ledc.h" #include "esp_err.h" #define PWM_DBG(...) // #define PWM_DBG(...) mp_printf(&mp_plat_print, __VA_ARGS__); mp_printf(&mp_plat_print, "\n"); // Total number of channels #define PWM_CHANNEL_MAX (LEDC_SPEED_MODE_MAX * LEDC_CHANNEL_MAX) typedef struct _chan_t { // Which channel has which GPIO pin assigned? // (-1 if not assigned) gpio_num_t pin; // Which channel has which timer assigned? // (-1 if not assigned) int timer_idx; } chan_t; // List of PWM channels STATIC chan_t chans[PWM_CHANNEL_MAX]; // channel_idx is an index (end-to-end sequential numbering) for all channels // available on the chip and described in chans[] #define CHANNEL_IDX(mode, channel) (mode * LEDC_CHANNEL_MAX + channel) #define CHANNEL_IDX_TO_MODE(channel_idx) (channel_idx / LEDC_CHANNEL_MAX) #define CHANNEL_IDX_TO_CHANNEL(channel_idx) (channel_idx % LEDC_CHANNEL_MAX) // Total number of timers #define PWM_TIMER_MAX (LEDC_SPEED_MODE_MAX * LEDC_TIMER_MAX) // List of timer configs STATIC ledc_timer_config_t timers[PWM_TIMER_MAX]; // timer_idx is an index (end-to-end sequential numbering) for all timers // available on the chip and configured in timers[] #define TIMER_IDX(mode, timer) (mode * LEDC_TIMER_MAX + timer) #define TIMER_IDX_TO_MODE(timer_idx) (timer_idx / LEDC_TIMER_MAX) #define TIMER_IDX_TO_TIMER(timer_idx) (timer_idx % LEDC_TIMER_MAX) // Params for PWM operation // 5khz is default frequency #define PWM_FREQ (5000) // 10-bit resolution (compatible with esp8266 PWM) #define PWM_RES_10_BIT (LEDC_TIMER_10_BIT) // Maximum duty value on 10-bit resolution #define MAX_DUTY_U10 ((1 << PWM_RES_10_BIT) - 1) // https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-reference/peripherals/ledc.html#supported-range-of-frequency-and-duty-resolutions // duty() uses 10-bit resolution or less // duty_u16() and duty_ns() use 16-bit resolution or less // Possible highest resolution in device #if (LEDC_TIMER_BIT_MAX - 1) < LEDC_TIMER_16_BIT #define HIGHEST_PWM_RES (LEDC_TIMER_BIT_MAX - 1) #else #define HIGHEST_PWM_RES (LEDC_TIMER_16_BIT) // 20 bit for ESP32, but 16 bit is used #endif // Duty resolution of user interface in `duty_u16()` and `duty_u16` parameter in constructor/initializer #define UI_RES_16_BIT (16) // Maximum duty value on highest user interface resolution #define UI_MAX_DUTY ((1 << UI_RES_16_BIT) - 1) // How much to shift from the HIGHEST_PWM_RES duty resolution to the user interface duty resolution UI_RES_16_BIT #define UI_RES_SHIFT (UI_RES_16_BIT - HIGHEST_PWM_RES) // 0 for ESP32, 2 for S2, S3, C3 #if SOC_LEDC_SUPPORT_REF_TICK // If the PWM frequency is less than EMPIRIC_FREQ, then LEDC_REF_CLK_HZ(1 MHz) source is used, else LEDC_APB_CLK_HZ(80 MHz) source is used #define EMPIRIC_FREQ (10) // Hz #endif // Config of timer upon which we run all PWM'ed GPIO pins STATIC bool pwm_inited = false; // MicroPython PWM object struct typedef struct _machine_pwm_obj_t { mp_obj_base_t base; gpio_num_t pin; bool active; int mode; int channel; int timer; int duty_x; // PWM_RES_10_BIT if duty(), HIGHEST_PWM_RES if duty_u16(), -HIGHEST_PWM_RES if duty_ns() int duty_u10; // stored values from previous duty setters int duty_u16; // - / - int duty_ns; // - / - } machine_pwm_obj_t; STATIC bool is_timer_in_use(int current_channel_idx, int timer_idx); STATIC void set_duty_u16(machine_pwm_obj_t *self, int duty); STATIC void set_duty_u10(machine_pwm_obj_t *self, int duty); STATIC void set_duty_ns(machine_pwm_obj_t *self, int ns); STATIC void pwm_init(void) { // Initial condition: no channels assigned for (int i = 0; i < PWM_CHANNEL_MAX; ++i) { chans[i].pin = -1; chans[i].timer_idx = -1; } // Prepare all timers config // Initial condition: no timers assigned for (int i = 0; i < PWM_TIMER_MAX; ++i) { timers[i].duty_resolution = HIGHEST_PWM_RES; // unset timer is -1 timers[i].freq_hz = -1; timers[i].speed_mode = TIMER_IDX_TO_MODE(i); timers[i].timer_num = TIMER_IDX_TO_TIMER(i); timers[i].clk_cfg = LEDC_AUTO_CLK; // will reinstall later according to the EMPIRIC_FREQ } } // Deinit channel and timer if the timer is unused STATIC void pwm_deinit(int channel_idx) { // Valid channel? if ((channel_idx >= 0) && (channel_idx < PWM_CHANNEL_MAX)) { // Clean up timer if necessary int timer_idx = chans[channel_idx].timer_idx; if (timer_idx != -1) { if (!is_timer_in_use(channel_idx, timer_idx)) { check_esp_err(ledc_timer_rst(TIMER_IDX_TO_MODE(timer_idx), TIMER_IDX_TO_TIMER(timer_idx))); // Flag it unused timers[chans[channel_idx].timer_idx].freq_hz = -1; } } int pin = chans[channel_idx].pin; if (pin != -1) { int mode = CHANNEL_IDX_TO_MODE(channel_idx); int channel = CHANNEL_IDX_TO_CHANNEL(channel_idx); // Mark it unused, and tell the hardware to stop routing check_esp_err(ledc_stop(mode, channel, 0)); // Disable ledc signal for the pin // gpio_matrix_out(pin, SIG_GPIO_OUT_IDX, false, false); if (mode == LEDC_LOW_SPEED_MODE) { gpio_matrix_out(pin, LEDC_LS_SIG_OUT0_IDX + channel, false, true); } else { #if LEDC_SPEED_MODE_MAX > 1 #if CONFIG_IDF_TARGET_ESP32 gpio_matrix_out(pin, LEDC_HS_SIG_OUT0_IDX + channel, false, true); #else #error Add supported CONFIG_IDF_TARGET_ESP32_xxx #endif #endif } } chans[channel_idx].pin = -1; chans[channel_idx].timer_idx = -1; } } // This called from Ctrl-D soft reboot void machine_pwm_deinit_all(void) { if (pwm_inited) { for (int channel_idx = 0; channel_idx < PWM_CHANNEL_MAX; ++channel_idx) { pwm_deinit(channel_idx); } pwm_inited = false; } } STATIC void configure_channel(machine_pwm_obj_t *self) { ledc_channel_config_t cfg = { .channel = self->channel, .duty = (1 << (timers[TIMER_IDX(self->mode, self->timer)].duty_resolution)) / 2, .gpio_num = self->pin, .intr_type = LEDC_INTR_DISABLE, .speed_mode = self->mode, .timer_sel = self->timer, }; if (ledc_channel_config(&cfg) != ESP_OK) { mp_raise_msg_varg(&mp_type_ValueError, MP_ERROR_TEXT("PWM not supported on Pin(%d)"), self->pin); } } STATIC void set_freq(machine_pwm_obj_t *self, unsigned int freq, ledc_timer_config_t *timer) { if (freq != timer->freq_hz) { // Find the highest bit resolution for the requested frequency unsigned int i = LEDC_APB_CLK_HZ; // 80 MHz #if SOC_LEDC_SUPPORT_REF_TICK if (freq < EMPIRIC_FREQ) { i = LEDC_REF_CLK_HZ; // 1 MHz } #endif #if ESP_IDF_VERSION < ESP_IDF_VERSION_VAL(5, 0, 0) // original code i /= freq; #else // See https://github.com/espressif/esp-idf/issues/7722 int divider = (i + freq / 2) / freq; // rounded if (divider == 0) { divider = 1; } float f = (float)i / divider; // actual frequency if (f <= 1.0) { f = 1.0; } i = (unsigned int)roundf((float)i / f); #endif unsigned int res = 0; for (; i > 1; i >>= 1) { ++res; } if (res == 0) { res = 1; } else if (res > HIGHEST_PWM_RES) { // Limit resolution to HIGHEST_PWM_RES to match units of our duty res = HIGHEST_PWM_RES; } // Configure the new resolution and frequency timer->duty_resolution = res; timer->freq_hz = freq; timer->clk_cfg = LEDC_USE_APB_CLK; #if SOC_LEDC_SUPPORT_REF_TICK if (freq < EMPIRIC_FREQ) { timer->clk_cfg = LEDC_USE_REF_TICK; } #endif // Set frequency esp_err_t err = ledc_timer_config(timer); if (err != ESP_OK) { if (err == ESP_FAIL) { mp_raise_msg_varg(&mp_type_ValueError, MP_ERROR_TEXT("unreachable frequency %d"), freq); } else { check_esp_err(err); } } // Reset the timer if low speed if (self->mode == LEDC_LOW_SPEED_MODE) { check_esp_err(ledc_timer_rst(self->mode, self->timer)); } } // Save the same duty cycle when frequency is changed if (self->duty_x == HIGHEST_PWM_RES) { set_duty_u16(self, self->duty_u16); } else if (self->duty_x == PWM_RES_10_BIT) { set_duty_u10(self, self->duty_u10); } else if (self->duty_x == -HIGHEST_PWM_RES) { set_duty_ns(self, self->duty_ns); } } // Calculate the duty parameters based on an ns value STATIC int ns_to_duty(machine_pwm_obj_t *self, int ns) { ledc_timer_config_t timer = timers[TIMER_IDX(self->mode, self->timer)]; int64_t duty = ((int64_t)ns * UI_MAX_DUTY * timer.freq_hz + 500000000LL) / 1000000000LL; if ((ns > 0) && (duty == 0)) { duty = 1; } else if (duty > UI_MAX_DUTY) { duty = UI_MAX_DUTY; } return duty; } STATIC int duty_to_ns(machine_pwm_obj_t *self, int duty) { ledc_timer_config_t timer = timers[TIMER_IDX(self->mode, self->timer)]; int64_t ns = ((int64_t)duty * 1000000000LL + (int64_t)timer.freq_hz * UI_MAX_DUTY / 2) / ((int64_t)timer.freq_hz * UI_MAX_DUTY); return ns; } #define get_duty_raw(self) ledc_get_duty(self->mode, self->channel) STATIC uint32_t get_duty_u16(machine_pwm_obj_t *self) { int resolution = timers[TIMER_IDX(self->mode, self->timer)].duty_resolution; int duty = ledc_get_duty(self->mode, self->channel); if (resolution <= UI_RES_16_BIT) { duty <<= (UI_RES_16_BIT - resolution); } else { duty >>= (resolution - UI_RES_16_BIT); } return duty; } STATIC uint32_t get_duty_u10(machine_pwm_obj_t *self) { return get_duty_u16(self) >> 6; // Scale down from 16 bit to 10 bit resolution } STATIC uint32_t get_duty_ns(machine_pwm_obj_t *self) { return duty_to_ns(self, get_duty_u16(self)); } STATIC void set_duty_u16(machine_pwm_obj_t *self, int duty) { if ((duty < 0) || (duty > UI_MAX_DUTY)) { mp_raise_msg_varg(&mp_type_ValueError, MP_ERROR_TEXT("duty_u16 must be from 0 to %d"), UI_MAX_DUTY); } ledc_timer_config_t timer = timers[TIMER_IDX(self->mode, self->timer)]; int channel_duty; if (timer.duty_resolution <= UI_RES_16_BIT) { channel_duty = duty >> (UI_RES_16_BIT - timer.duty_resolution); } else { channel_duty = duty << (timer.duty_resolution - UI_RES_16_BIT); } int max_duty = (1 << timer.duty_resolution) - 1; if (channel_duty < 0) { channel_duty = 0; } else if (channel_duty > max_duty) { channel_duty = max_duty; } check_esp_err(ledc_set_duty(self->mode, self->channel, channel_duty)); check_esp_err(ledc_update_duty(self->mode, self->channel)); /* // Bug: Sometimes duty is not set right now. // Not a bug. It's a feature. The duty is applied at the beginning of the next signal period. // Bug: It has been experimentally established that the duty is setted during 2 signal periods, but 1 period is expected. // See https://github.com/espressif/esp-idf/issues/7288 if (duty != get_duty_u16(self)) { PWM_DBG("set_duty_u16(%u), get_duty_u16():%u, channel_duty:%d, duty_resolution:%d, freq_hz:%d", duty, get_duty_u16(self), channel_duty, timer.duty_resolution, timer.freq_hz); ets_delay_us(2 * 1000000 / timer.freq_hz); if (duty != get_duty_u16(self)) { PWM_DBG("set_duty_u16(%u), get_duty_u16():%u, channel_duty:%d, duty_resolution:%d, freq_hz:%d", duty, get_duty_u16(self), channel_duty, timer.duty_resolution, timer.freq_hz); } } */ self->duty_x = HIGHEST_PWM_RES; self->duty_u16 = duty; } STATIC void set_duty_u10(machine_pwm_obj_t *self, int duty) { if ((duty < 0) || (duty > MAX_DUTY_U10)) { mp_raise_msg_varg(&mp_type_ValueError, MP_ERROR_TEXT("duty must be from 0 to %u"), MAX_DUTY_U10); } set_duty_u16(self, duty << (UI_RES_16_BIT - PWM_RES_10_BIT)); self->duty_x = PWM_RES_10_BIT; self->duty_u10 = duty; } STATIC void set_duty_ns(machine_pwm_obj_t *self, int ns) { if ((ns < 0) || (ns > duty_to_ns(self, UI_MAX_DUTY))) { mp_raise_msg_varg(&mp_type_ValueError, MP_ERROR_TEXT("duty_ns must be from 0 to %d ns"), duty_to_ns(self, UI_MAX_DUTY)); } set_duty_u16(self, ns_to_duty(self, ns)); self->duty_x = -HIGHEST_PWM_RES; self->duty_ns = ns; } /******************************************************************************/ #define SAME_FREQ_ONLY (true) #define SAME_FREQ_OR_FREE (false) #define ANY_MODE (-1) // Return timer_idx. Use TIMER_IDX_TO_MODE(timer_idx) and TIMER_IDX_TO_TIMER(timer_idx) to get mode and timer STATIC int find_timer(unsigned int freq, bool same_freq_only, int mode) { int free_timer_idx_found = -1; // Find a free PWM Timer using the same freq for (int timer_idx = 0; timer_idx < PWM_TIMER_MAX; ++timer_idx) { if ((mode == ANY_MODE) || (mode == TIMER_IDX_TO_MODE(timer_idx))) { if (timers[timer_idx].freq_hz == freq) { // A timer already uses the same freq. Use it now. return timer_idx; } if (!same_freq_only && (free_timer_idx_found == -1) && (timers[timer_idx].freq_hz == -1)) { free_timer_idx_found = timer_idx; // Continue to check if a channel with the same freq is in use. } } } return free_timer_idx_found; } // Return true if the timer is in use in addition to current channel STATIC bool is_timer_in_use(int current_channel_idx, int timer_idx) { for (int i = 0; i < PWM_CHANNEL_MAX; ++i) { if ((i != current_channel_idx) && (chans[i].timer_idx == timer_idx)) { return true; } } return false; } // Find a free PWM channel, also spot if our pin is already mentioned. // Return channel_idx. Use CHANNEL_IDX_TO_MODE(channel_idx) and CHANNEL_IDX_TO_CHANNEL(channel_idx) to get mode and channel STATIC int find_channel(int pin, int mode) { int avail_idx = -1; int channel_idx; for (channel_idx = 0; channel_idx < PWM_CHANNEL_MAX; ++channel_idx) { if ((mode == ANY_MODE) || (mode == CHANNEL_IDX_TO_MODE(channel_idx))) { if (chans[channel_idx].pin == pin) { break; } if ((avail_idx == -1) && (chans[channel_idx].pin == -1)) { avail_idx = channel_idx; } } } if (channel_idx >= PWM_CHANNEL_MAX) { channel_idx = avail_idx; } return channel_idx; } /******************************************************************************/ // MicroPython bindings for PWM STATIC void mp_machine_pwm_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) { machine_pwm_obj_t *self = MP_OBJ_TO_PTR(self_in); mp_printf(print, "PWM(Pin(%u)", self->pin); if (self->active) { mp_printf(print, ", freq=%u", ledc_get_freq(self->mode, self->timer)); if (self->duty_x == PWM_RES_10_BIT) { mp_printf(print, ", duty=%d", get_duty_u10(self)); } else if (self->duty_x == -HIGHEST_PWM_RES) { mp_printf(print, ", duty_ns=%d", get_duty_ns(self)); } else { mp_printf(print, ", duty_u16=%d", get_duty_u16(self)); } int resolution = timers[TIMER_IDX(self->mode, self->timer)].duty_resolution; mp_printf(print, ", resolution=%d", resolution); mp_printf(print, ", (duty=%.2f%%, resolution=%.3f%%)", 100.0 * get_duty_raw(self) / (1 << resolution), 100.0 * 1 / (1 << resolution)); // percents mp_printf(print, ", mode=%d, channel=%d, timer=%d", self->mode, self->channel, self->timer); } mp_printf(print, ")"); } // This called from pwm.init() method STATIC void mp_machine_pwm_init_helper(machine_pwm_obj_t *self, size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) { enum { ARG_freq, ARG_duty, ARG_duty_u16, ARG_duty_ns }; static const mp_arg_t allowed_args[] = { { MP_QSTR_freq, MP_ARG_INT, {.u_int = -1} }, { MP_QSTR_duty, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = -1} }, { MP_QSTR_duty_u16, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = -1} }, { MP_QSTR_duty_ns, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = -1} }, }; mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)]; mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args); int channel_idx = find_channel(self->pin, ANY_MODE); if (channel_idx == -1) { mp_raise_msg_varg(&mp_type_ValueError, MP_ERROR_TEXT("out of PWM channels:%d"), PWM_CHANNEL_MAX); // in all modes } int duty = args[ARG_duty].u_int; int duty_u16 = args[ARG_duty_u16].u_int; int duty_ns = args[ARG_duty_ns].u_int; if (((duty != -1) && (duty_u16 != -1)) || ((duty != -1) && (duty_ns != -1)) || ((duty_u16 != -1) && (duty_ns != -1))) { mp_raise_ValueError(MP_ERROR_TEXT("only one of parameters 'duty', 'duty_u16' or 'duty_ns' is allowed")); } int freq = args[ARG_freq].u_int; // Check if freq wasn't passed as an argument if (freq == -1) { // Check if already set, otherwise use the default freq. // It is possible in case: // pwm = PWM(pin, freq=1000, duty=256) // pwm = PWM(pin, duty=128) if (chans[channel_idx].timer_idx != -1) { freq = timers[chans[channel_idx].timer_idx].freq_hz; } if (freq <= 0) { freq = PWM_FREQ; } } if ((freq <= 0) || (freq > 40000000)) { mp_raise_ValueError(MP_ERROR_TEXT("freqency must be from 1Hz to 40MHz")); } int timer_idx; int current_timer_idx = chans[channel_idx].timer_idx; bool current_in_use = is_timer_in_use(channel_idx, current_timer_idx); if (current_in_use) { timer_idx = find_timer(freq, SAME_FREQ_OR_FREE, CHANNEL_IDX_TO_MODE(channel_idx)); } else { timer_idx = chans[channel_idx].timer_idx; } if (timer_idx == -1) { timer_idx = find_timer(freq, SAME_FREQ_OR_FREE, ANY_MODE); } if (timer_idx == -1) { mp_raise_msg_varg(&mp_type_ValueError, MP_ERROR_TEXT("out of PWM timers:%d"), PWM_TIMER_MAX); // in all modes } int mode = TIMER_IDX_TO_MODE(timer_idx); if (CHANNEL_IDX_TO_MODE(channel_idx) != mode) { // unregister old channel chans[channel_idx].pin = -1; chans[channel_idx].timer_idx = -1; // find new channel channel_idx = find_channel(self->pin, mode); if (CHANNEL_IDX_TO_MODE(channel_idx) != mode) { mp_raise_msg_varg(&mp_type_ValueError, MP_ERROR_TEXT("out of PWM channels:%d"), PWM_CHANNEL_MAX); // in current mode } } self->mode = mode; self->timer = TIMER_IDX_TO_TIMER(timer_idx); self->channel = CHANNEL_IDX_TO_CHANNEL(channel_idx); // New PWM assignment if ((chans[channel_idx].pin == -1) || (chans[channel_idx].timer_idx != timer_idx)) { configure_channel(self); chans[channel_idx].pin = self->pin; } chans[channel_idx].timer_idx = timer_idx; self->active = true; // Set timer frequency set_freq(self, freq, &timers[timer_idx]); // Set duty cycle? if (duty_u16 != -1) { set_duty_u16(self, duty_u16); } else if (duty_ns != -1) { set_duty_ns(self, duty_ns); } else if (duty != -1) { set_duty_u10(self, duty); } else if (self->duty_x == 0) { set_duty_u10(self, (1 << PWM_RES_10_BIT) / 2); // 50% } } // This called from PWM() constructor STATIC mp_obj_t mp_machine_pwm_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *args) { mp_arg_check_num(n_args, n_kw, 1, 2, true); gpio_num_t pin_id = machine_pin_get_id(args[0]); // create PWM object from the given pin machine_pwm_obj_t *self = mp_obj_malloc(machine_pwm_obj_t, &machine_pwm_type); self->pin = pin_id; self->active = false; self->mode = -1; self->channel = -1; self->timer = -1; self->duty_x = 0; // start the PWM subsystem if it's not already running if (!pwm_inited) { pwm_init(); pwm_inited = true; } // start the PWM running for this channel mp_map_t kw_args; mp_map_init_fixed_table(&kw_args, n_kw, args + n_args); mp_machine_pwm_init_helper(self, n_args - 1, args + 1, &kw_args); return MP_OBJ_FROM_PTR(self); } // This called from pwm.deinit() method STATIC void mp_machine_pwm_deinit(machine_pwm_obj_t *self) { int channel_idx = CHANNEL_IDX(self->mode, self->channel); pwm_deinit(channel_idx); self->active = false; self->mode = -1; self->channel = -1; self->timer = -1; self->duty_x = 0; } // Set's and get's methods of PWM class STATIC mp_obj_t mp_machine_pwm_freq_get(machine_pwm_obj_t *self) { return MP_OBJ_NEW_SMALL_INT(ledc_get_freq(self->mode, self->timer)); } STATIC void mp_machine_pwm_freq_set(machine_pwm_obj_t *self, mp_int_t freq) { if ((freq <= 0) || (freq > 40000000)) { mp_raise_ValueError(MP_ERROR_TEXT("freqency must be from 1Hz to 40MHz")); } if (freq == timers[TIMER_IDX(self->mode, self->timer)].freq_hz) { return; } int current_timer_idx = chans[CHANNEL_IDX(self->mode, self->channel)].timer_idx; bool current_in_use = is_timer_in_use(CHANNEL_IDX(self->mode, self->channel), current_timer_idx); // Check if an already running timer with the same freq is running int new_timer_idx = find_timer(freq, SAME_FREQ_ONLY, self->mode); // If no existing timer was found, and the current one is in use, then find a new one if ((new_timer_idx == -1) && current_in_use) { // Have to find a new timer new_timer_idx = find_timer(freq, SAME_FREQ_OR_FREE, self->mode); if (new_timer_idx == -1) { mp_raise_msg_varg(&mp_type_ValueError, MP_ERROR_TEXT("out of PWM timers:%d"), PWM_TIMER_MAX); // in current mode } } if ((new_timer_idx != -1) && (new_timer_idx != current_timer_idx)) { // Bind the channel to the new timer chans[self->channel].timer_idx = new_timer_idx; if (ledc_bind_channel_timer(self->mode, self->channel, TIMER_IDX_TO_TIMER(new_timer_idx)) != ESP_OK) { mp_raise_msg_varg(&mp_type_ValueError, MP_ERROR_TEXT("failed to bind timer to channel")); } if (!current_in_use) { // Free the old timer check_esp_err(ledc_timer_rst(self->mode, self->timer)); // Flag it unused timers[current_timer_idx].freq_hz = -1; } current_timer_idx = new_timer_idx; } self->mode = TIMER_IDX_TO_MODE(current_timer_idx); self->timer = TIMER_IDX_TO_TIMER(current_timer_idx); // Set the frequency set_freq(self, freq, &timers[current_timer_idx]); } STATIC mp_obj_t mp_machine_pwm_duty_get(machine_pwm_obj_t *self) { return MP_OBJ_NEW_SMALL_INT(get_duty_u10(self)); } STATIC void mp_machine_pwm_duty_set(machine_pwm_obj_t *self, mp_int_t duty) { set_duty_u10(self, duty); } STATIC mp_obj_t mp_machine_pwm_duty_get_u16(machine_pwm_obj_t *self) { return MP_OBJ_NEW_SMALL_INT(get_duty_u16(self)); } STATIC void mp_machine_pwm_duty_set_u16(machine_pwm_obj_t *self, mp_int_t duty_u16) { set_duty_u16(self, duty_u16); } STATIC mp_obj_t mp_machine_pwm_duty_get_ns(machine_pwm_obj_t *self) { return MP_OBJ_NEW_SMALL_INT(get_duty_ns(self)); } STATIC void mp_machine_pwm_duty_set_ns(machine_pwm_obj_t *self, mp_int_t duty_ns) { set_duty_ns(self, duty_ns); }