/* * This file is part of the MicroPython project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2013-2020 Damien P. George * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include #include #include #include #include "py/reader.h" #include "py/nativeglue.h" #include "py/persistentcode.h" #include "py/bc0.h" #include "py/objstr.h" #include "py/mpthread.h" #if MICROPY_PERSISTENT_CODE_LOAD || MICROPY_PERSISTENT_CODE_SAVE #include "py/smallint.h" #define QSTR_LAST_STATIC MP_QSTR_zip #if MICROPY_DYNAMIC_COMPILER #define MPY_FEATURE_ARCH_DYNAMIC mp_dynamic_compiler.native_arch #else #define MPY_FEATURE_ARCH_DYNAMIC MPY_FEATURE_ARCH #endif typedef struct _bytecode_prelude_t { uint n_state; uint n_exc_stack; uint scope_flags; uint n_pos_args; uint n_kwonly_args; uint n_def_pos_args; uint code_info_size; } bytecode_prelude_t; #endif // MICROPY_PERSISTENT_CODE_LOAD || MICROPY_PERSISTENT_CODE_SAVE #if MICROPY_PERSISTENT_CODE_LOAD #include "py/parsenum.h" STATIC int read_byte(mp_reader_t *reader); STATIC size_t read_uint(mp_reader_t *reader); #if MICROPY_EMIT_MACHINE_CODE typedef struct _reloc_info_t { mp_reader_t *reader; mp_module_context_t *context; uint8_t *rodata; uint8_t *bss; } reloc_info_t; void mp_native_relocate(void *ri_in, uint8_t *text, uintptr_t reloc_text) { // Relocate native code reloc_info_t *ri = ri_in; uint8_t op; uintptr_t *addr_to_adjust = NULL; while ((op = read_byte(ri->reader)) != 0xff) { if (op & 1) { // Point to new location to make adjustments size_t addr = read_uint(ri->reader); if ((addr & 1) == 0) { // Point to somewhere in text addr_to_adjust = &((uintptr_t *)text)[addr >> 1]; } else { // Point to somewhere in rodata addr_to_adjust = &((uintptr_t *)ri->rodata)[addr >> 1]; } } op >>= 1; uintptr_t dest; size_t n = 1; if (op <= 5) { if (op & 1) { // Read in number of adjustments to make n = read_uint(ri->reader); } op >>= 1; if (op == 0) { // Destination is text dest = reloc_text; } else if (op == 1) { // Destination is rodata dest = (uintptr_t)ri->rodata; } else { // Destination is bss dest = (uintptr_t)ri->bss; } } else if (op == 6) { // Destination is qstr_table dest = (uintptr_t)ri->context->constants.qstr_table; } else if (op == 7) { // Destination is obj_table dest = (uintptr_t)ri->context->constants.obj_table; } else if (op == 8) { // Destination is mp_fun_table itself dest = (uintptr_t)&mp_fun_table; } else { // Destination is an entry in mp_fun_table dest = ((uintptr_t *)&mp_fun_table)[op - 9]; } while (n--) { *addr_to_adjust++ += dest; } } } #endif STATIC int read_byte(mp_reader_t *reader) { return reader->readbyte(reader->data); } STATIC void read_bytes(mp_reader_t *reader, byte *buf, size_t len) { while (len-- > 0) { *buf++ = reader->readbyte(reader->data); } } STATIC size_t read_uint(mp_reader_t *reader) { size_t unum = 0; for (;;) { byte b = reader->readbyte(reader->data); unum = (unum << 7) | (b & 0x7f); if ((b & 0x80) == 0) { break; } } return unum; } STATIC qstr load_qstr(mp_reader_t *reader) { size_t len = read_uint(reader); if (len & 1) { // static qstr return len >> 1; } len >>= 1; char *str = m_new(char, len); read_bytes(reader, (byte *)str, len); read_byte(reader); // read and discard null terminator qstr qst = qstr_from_strn(str, len); m_del(char, str, len); return qst; } STATIC mp_obj_t load_obj(mp_reader_t *reader) { byte obj_type = read_byte(reader); #if MICROPY_EMIT_MACHINE_CODE if (obj_type == MP_PERSISTENT_OBJ_FUN_TABLE) { return MP_OBJ_FROM_PTR(&mp_fun_table); } else #endif if (obj_type == MP_PERSISTENT_OBJ_NONE) { return mp_const_none; } else if (obj_type == MP_PERSISTENT_OBJ_FALSE) { return mp_const_false; } else if (obj_type == MP_PERSISTENT_OBJ_TRUE) { return mp_const_true; } else if (obj_type == MP_PERSISTENT_OBJ_ELLIPSIS) { return MP_OBJ_FROM_PTR(&mp_const_ellipsis_obj); } else { size_t len = read_uint(reader); if (len == 0 && obj_type == MP_PERSISTENT_OBJ_BYTES) { read_byte(reader); // skip null terminator return mp_const_empty_bytes; } else if (obj_type == MP_PERSISTENT_OBJ_TUPLE) { mp_obj_tuple_t *tuple = MP_OBJ_TO_PTR(mp_obj_new_tuple(len, NULL)); for (size_t i = 0; i < len; ++i) { tuple->items[i] = load_obj(reader); } return MP_OBJ_FROM_PTR(tuple); } vstr_t vstr; vstr_init_len(&vstr, len); read_bytes(reader, (byte *)vstr.buf, len); if (obj_type == MP_PERSISTENT_OBJ_STR || obj_type == MP_PERSISTENT_OBJ_BYTES) { read_byte(reader); // skip null terminator if (obj_type == MP_PERSISTENT_OBJ_STR) { return mp_obj_new_str_from_utf8_vstr(&vstr); } else { return mp_obj_new_bytes_from_vstr(&vstr); } } else if (obj_type == MP_PERSISTENT_OBJ_INT) { return mp_parse_num_integer(vstr.buf, vstr.len, 10, NULL); } else { assert(obj_type == MP_PERSISTENT_OBJ_FLOAT || obj_type == MP_PERSISTENT_OBJ_COMPLEX); return mp_parse_num_float(vstr.buf, vstr.len, obj_type == MP_PERSISTENT_OBJ_COMPLEX, NULL); } } } STATIC mp_raw_code_t *load_raw_code(mp_reader_t *reader, mp_module_context_t *context) { // Load function kind and data length size_t kind_len = read_uint(reader); int kind = (kind_len & 3) + MP_CODE_BYTECODE; bool has_children = !!(kind_len & 4); size_t fun_data_len = kind_len >> 3; #if !MICROPY_EMIT_MACHINE_CODE if (kind != MP_CODE_BYTECODE) { mp_raise_ValueError(MP_ERROR_TEXT("incompatible .mpy file")); } #endif uint8_t *fun_data = NULL; #if MICROPY_EMIT_MACHINE_CODE size_t prelude_offset = 0; mp_uint_t native_scope_flags = 0; mp_uint_t native_n_pos_args = 0; mp_uint_t native_type_sig = 0; #endif if (kind == MP_CODE_BYTECODE) { // Allocate memory for the bytecode fun_data = m_new(uint8_t, fun_data_len); // Load bytecode read_bytes(reader, fun_data, fun_data_len); #if MICROPY_EMIT_MACHINE_CODE } else { // Allocate memory for native data and load it size_t fun_alloc; MP_PLAT_ALLOC_EXEC(fun_data_len, (void **)&fun_data, &fun_alloc); read_bytes(reader, fun_data, fun_data_len); if (kind == MP_CODE_NATIVE_PY) { // Read prelude offset within fun_data, and extract scope flags. prelude_offset = read_uint(reader); const byte *ip = fun_data + prelude_offset; MP_BC_PRELUDE_SIG_DECODE(ip); native_scope_flags = scope_flags; } else { // Load basic scope info for viper and asm. native_scope_flags = read_uint(reader); if (kind == MP_CODE_NATIVE_ASM) { native_n_pos_args = read_uint(reader); native_type_sig = read_uint(reader); } } #endif } size_t n_children = 0; mp_raw_code_t **children = NULL; #if MICROPY_EMIT_MACHINE_CODE // Load optional BSS/rodata for viper. uint8_t *rodata = NULL; uint8_t *bss = NULL; if (kind == MP_CODE_NATIVE_VIPER) { size_t rodata_size = 0; if (native_scope_flags & MP_SCOPE_FLAG_VIPERRODATA) { rodata_size = read_uint(reader); } size_t bss_size = 0; if (native_scope_flags & MP_SCOPE_FLAG_VIPERBSS) { bss_size = read_uint(reader); } if (rodata_size + bss_size != 0) { bss_size = (uintptr_t)MP_ALIGN(bss_size, sizeof(uintptr_t)); uint8_t *data = m_new0(uint8_t, bss_size + rodata_size); bss = data; rodata = bss + bss_size; if (native_scope_flags & MP_SCOPE_FLAG_VIPERRODATA) { read_bytes(reader, rodata, rodata_size); } // Viper code with BSS/rodata should not have any children. // Reuse the children pointer to reference the BSS/rodata // memory so that it is not reclaimed by the GC. assert(!has_children); children = (void *)data; } } #endif // Load children if any. if (has_children) { n_children = read_uint(reader); children = m_new(mp_raw_code_t *, n_children + (kind == MP_CODE_NATIVE_PY)); for (size_t i = 0; i < n_children; ++i) { children[i] = load_raw_code(reader, context); } } // Create raw_code and return it mp_raw_code_t *rc = mp_emit_glue_new_raw_code(); if (kind == MP_CODE_BYTECODE) { const byte *ip = fun_data; MP_BC_PRELUDE_SIG_DECODE(ip); // Assign bytecode to raw code object mp_emit_glue_assign_bytecode(rc, fun_data, #if MICROPY_PERSISTENT_CODE_SAVE || MICROPY_DEBUG_PRINTERS fun_data_len, #endif children, #if MICROPY_PERSISTENT_CODE_SAVE n_children, #endif scope_flags); #if MICROPY_EMIT_MACHINE_CODE } else { const uint8_t *prelude_ptr; #if MICROPY_EMIT_NATIVE_PRELUDE_SEPARATE_FROM_MACHINE_CODE if (kind == MP_CODE_NATIVE_PY) { // Executable code cannot be accessed byte-wise on this architecture, so copy // the prelude to a separate memory region that is byte-wise readable. void *buf = fun_data + prelude_offset; size_t n = fun_data_len - prelude_offset; prelude_ptr = memcpy(m_new(uint8_t, n), buf, n); } #endif // Relocate and commit code to executable address space reloc_info_t ri = {reader, context, rodata, bss}; #if defined(MP_PLAT_COMMIT_EXEC) void *opt_ri = (native_scope_flags & MP_SCOPE_FLAG_VIPERRELOC) ? &ri : NULL; fun_data = MP_PLAT_COMMIT_EXEC(fun_data, fun_data_len, opt_ri); #else if (native_scope_flags & MP_SCOPE_FLAG_VIPERRELOC) { #if MICROPY_PERSISTENT_CODE_TRACK_RELOC_CODE // If native code needs relocations then it's not guaranteed that a pointer to // the head of `buf` (containing the machine code) will be retained for the GC // to trace. This is because native functions can start inside `buf` and so // it's possible that the only GC-reachable pointers are pointers inside `buf`. // So put this `buf` on a list of reachable root pointers. if (MP_STATE_PORT(track_reloc_code_list) == MP_OBJ_NULL) { MP_STATE_PORT(track_reloc_code_list) = mp_obj_new_list(0, NULL); } mp_obj_list_append(MP_STATE_PORT(track_reloc_code_list), MP_OBJ_FROM_PTR(fun_data)); #endif // Do the relocations. mp_native_relocate(&ri, fun_data, (uintptr_t)fun_data); } #endif if (kind == MP_CODE_NATIVE_PY) { #if !MICROPY_EMIT_NATIVE_PRELUDE_SEPARATE_FROM_MACHINE_CODE prelude_ptr = fun_data + prelude_offset; #endif if (n_children == 0) { children = (void *)prelude_ptr; } else { children[n_children] = (void *)prelude_ptr; } } // Assign native code to raw code object mp_emit_glue_assign_native(rc, kind, fun_data, fun_data_len, children, #if MICROPY_PERSISTENT_CODE_SAVE n_children, prelude_offset, #endif native_scope_flags, native_n_pos_args, native_type_sig ); #endif } return rc; } mp_compiled_module_t mp_raw_code_load(mp_reader_t *reader, mp_module_context_t *context) { byte header[4]; read_bytes(reader, header, sizeof(header)); byte arch = MPY_FEATURE_DECODE_ARCH(header[2]); if (header[0] != 'M' || header[1] != MPY_VERSION || (arch != MP_NATIVE_ARCH_NONE && MPY_FEATURE_DECODE_SUB_VERSION(header[2]) != MPY_SUB_VERSION) || header[3] > MP_SMALL_INT_BITS) { mp_raise_ValueError(MP_ERROR_TEXT("incompatible .mpy file")); } if (MPY_FEATURE_DECODE_ARCH(header[2]) != MP_NATIVE_ARCH_NONE) { if (!MPY_FEATURE_ARCH_TEST(arch)) { if (MPY_FEATURE_ARCH_TEST(MP_NATIVE_ARCH_NONE)) { // On supported ports this can be resolved by enabling feature, eg // mpconfigboard.h: MICROPY_EMIT_THUMB (1) mp_raise_ValueError(MP_ERROR_TEXT("native code in .mpy unsupported")); } else { mp_raise_ValueError(MP_ERROR_TEXT("incompatible .mpy arch")); } } } size_t n_qstr = read_uint(reader); size_t n_obj = read_uint(reader); mp_module_context_alloc_tables(context, n_qstr, n_obj); // Load qstrs. for (size_t i = 0; i < n_qstr; ++i) { context->constants.qstr_table[i] = load_qstr(reader); } // Load constant objects. for (size_t i = 0; i < n_obj; ++i) { context->constants.obj_table[i] = load_obj(reader); } // Load top-level module. mp_compiled_module_t cm2; cm2.rc = load_raw_code(reader, context); cm2.context = context; #if MICROPY_PERSISTENT_CODE_SAVE cm2.has_native = MPY_FEATURE_DECODE_ARCH(header[2]) != MP_NATIVE_ARCH_NONE; cm2.n_qstr = n_qstr; cm2.n_obj = n_obj; #endif reader->close(reader->data); return cm2; } mp_compiled_module_t mp_raw_code_load_mem(const byte *buf, size_t len, mp_module_context_t *context) { mp_reader_t reader; mp_reader_new_mem(&reader, buf, len, 0); return mp_raw_code_load(&reader, context); } #if MICROPY_HAS_FILE_READER mp_compiled_module_t mp_raw_code_load_file(const char *filename, mp_module_context_t *context) { mp_reader_t reader; mp_reader_new_file(&reader, filename); return mp_raw_code_load(&reader, context); } #endif // MICROPY_HAS_FILE_READER #endif // MICROPY_PERSISTENT_CODE_LOAD #if MICROPY_PERSISTENT_CODE_SAVE #include "py/objstr.h" STATIC void mp_print_bytes(mp_print_t *print, const byte *data, size_t len) { print->print_strn(print->data, (const char *)data, len); } #define BYTES_FOR_INT ((MP_BYTES_PER_OBJ_WORD * 8 + 6) / 7) STATIC void mp_print_uint(mp_print_t *print, size_t n) { byte buf[BYTES_FOR_INT]; byte *p = buf + sizeof(buf); *--p = n & 0x7f; n >>= 7; for (; n != 0; n >>= 7) { *--p = 0x80 | (n & 0x7f); } print->print_strn(print->data, (char *)p, buf + sizeof(buf) - p); } STATIC void save_qstr(mp_print_t *print, qstr qst) { if (qst <= QSTR_LAST_STATIC) { // encode static qstr mp_print_uint(print, qst << 1 | 1); return; } size_t len; const byte *str = qstr_data(qst, &len); mp_print_uint(print, len << 1); mp_print_bytes(print, str, len + 1); // +1 to store null terminator } STATIC void save_obj(mp_print_t *print, mp_obj_t o) { #if MICROPY_EMIT_MACHINE_CODE if (o == MP_OBJ_FROM_PTR(&mp_fun_table)) { byte obj_type = MP_PERSISTENT_OBJ_FUN_TABLE; mp_print_bytes(print, &obj_type, 1); } else #endif if (mp_obj_is_str_or_bytes(o)) { byte obj_type; if (mp_obj_is_str(o)) { obj_type = MP_PERSISTENT_OBJ_STR; } else { obj_type = MP_PERSISTENT_OBJ_BYTES; } size_t len; const char *str = mp_obj_str_get_data(o, &len); mp_print_bytes(print, &obj_type, 1); mp_print_uint(print, len); mp_print_bytes(print, (const byte *)str, len + 1); // +1 to store null terminator } else if (o == mp_const_none) { byte obj_type = MP_PERSISTENT_OBJ_NONE; mp_print_bytes(print, &obj_type, 1); } else if (o == mp_const_false) { byte obj_type = MP_PERSISTENT_OBJ_FALSE; mp_print_bytes(print, &obj_type, 1); } else if (o == mp_const_true) { byte obj_type = MP_PERSISTENT_OBJ_TRUE; mp_print_bytes(print, &obj_type, 1); } else if (MP_OBJ_TO_PTR(o) == &mp_const_ellipsis_obj) { byte obj_type = MP_PERSISTENT_OBJ_ELLIPSIS; mp_print_bytes(print, &obj_type, 1); } else if (mp_obj_is_type(o, &mp_type_tuple)) { size_t len; mp_obj_t *items; mp_obj_tuple_get(o, &len, &items); byte obj_type = MP_PERSISTENT_OBJ_TUPLE; mp_print_bytes(print, &obj_type, 1); mp_print_uint(print, len); for (size_t i = 0; i < len; ++i) { save_obj(print, items[i]); } } else { // we save numbers using a simplistic text representation // TODO could be improved byte obj_type; if (mp_obj_is_int(o)) { obj_type = MP_PERSISTENT_OBJ_INT; #if MICROPY_PY_BUILTINS_COMPLEX } else if (mp_obj_is_type(o, &mp_type_complex)) { obj_type = MP_PERSISTENT_OBJ_COMPLEX; #endif } else { assert(mp_obj_is_float(o)); obj_type = MP_PERSISTENT_OBJ_FLOAT; } vstr_t vstr; mp_print_t pr; vstr_init_print(&vstr, 10, &pr); mp_obj_print_helper(&pr, o, PRINT_REPR); mp_print_bytes(print, &obj_type, 1); mp_print_uint(print, vstr.len); mp_print_bytes(print, (const byte *)vstr.buf, vstr.len); vstr_clear(&vstr); } } STATIC void save_raw_code(mp_print_t *print, const mp_raw_code_t *rc) { // Save function kind and data length mp_print_uint(print, (rc->fun_data_len << 3) | ((rc->n_children != 0) << 2) | (rc->kind - MP_CODE_BYTECODE)); // Save function code. mp_print_bytes(print, rc->fun_data, rc->fun_data_len); #if MICROPY_EMIT_MACHINE_CODE if (rc->kind == MP_CODE_NATIVE_PY) { // Save prelude size mp_print_uint(print, rc->prelude_offset); } else if (rc->kind == MP_CODE_NATIVE_VIPER || rc->kind == MP_CODE_NATIVE_ASM) { // Save basic scope info for viper and asm mp_print_uint(print, rc->scope_flags & MP_SCOPE_FLAG_ALL_SIG); if (rc->kind == MP_CODE_NATIVE_ASM) { mp_print_uint(print, rc->n_pos_args); mp_print_uint(print, rc->type_sig); } } #endif if (rc->n_children) { mp_print_uint(print, rc->n_children); for (size_t i = 0; i < rc->n_children; ++i) { save_raw_code(print, rc->children[i]); } } } void mp_raw_code_save(mp_compiled_module_t *cm, mp_print_t *print) { // header contains: // byte 'M' // byte version // byte feature flags // byte number of bits in a small int byte header[4] = { 'M', MPY_VERSION, MPY_FEATURE_ENCODE_SUB_VERSION(MPY_SUB_VERSION), #if MICROPY_DYNAMIC_COMPILER mp_dynamic_compiler.small_int_bits, #else MP_SMALL_INT_BITS, #endif }; if (cm->has_native) { header[2] |= MPY_FEATURE_ENCODE_ARCH(MPY_FEATURE_ARCH_DYNAMIC); } mp_print_bytes(print, header, sizeof(header)); // Number of entries in constant table. mp_print_uint(print, cm->n_qstr); mp_print_uint(print, cm->n_obj); // Save qstrs. for (size_t i = 0; i < cm->n_qstr; ++i) { save_qstr(print, cm->context->constants.qstr_table[i]); } // Save constant objects. for (size_t i = 0; i < cm->n_obj; ++i) { save_obj(print, (mp_obj_t)cm->context->constants.obj_table[i]); } // Save outer raw code, which will save all its child raw codes. save_raw_code(print, cm->rc); } #if MICROPY_PERSISTENT_CODE_SAVE_FILE #include #include #include STATIC void fd_print_strn(void *env, const char *str, size_t len) { int fd = (intptr_t)env; MP_THREAD_GIL_EXIT(); ssize_t ret = write(fd, str, len); MP_THREAD_GIL_ENTER(); (void)ret; } void mp_raw_code_save_file(mp_compiled_module_t *cm, const char *filename) { MP_THREAD_GIL_EXIT(); int fd = open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0644); MP_THREAD_GIL_ENTER(); mp_print_t fd_print = {(void *)(intptr_t)fd, fd_print_strn}; mp_raw_code_save(cm, &fd_print); MP_THREAD_GIL_EXIT(); close(fd); MP_THREAD_GIL_ENTER(); } #endif // MICROPY_PERSISTENT_CODE_SAVE_FILE #endif // MICROPY_PERSISTENT_CODE_SAVE #if MICROPY_PERSISTENT_CODE_TRACK_RELOC_CODE // An mp_obj_list_t that tracks relocated native code to prevent the GC from reclaiming them. MP_REGISTER_ROOT_POINTER(mp_obj_t track_reloc_code_list); #endif