""" The MIT License (MIT) Copyright (c) 2013, 2014 Damien P. George Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. LSM9DS1 - 9DOF inertial sensor of STMicro driver for MicroPython. The sensor contains an accelerometer / gyroscope / magnetometer Uses the internal FIFO to store up to 16 gyro/accel data, use the iter_accel_gyro generator to access it. Example usage: import time from lsm9ds1 import LSM9DS1 from machine import Pin, I2C lsm = LSM9DS1(I2C(1, scl=Pin(15), sda=Pin(14))) while (True): #for g,a in lsm.iter_accel_gyro(): print(g,a) # using fifo print('Accelerometer: x:{:>8.3f} y:{:>8.3f} z:{:>8.3f}'.format(*lsm.accel())) print('Magnetometer: x:{:>8.3f} y:{:>8.3f} z:{:>8.3f}'.format(*lsm.magnet())) print('Gyroscope: x:{:>8.3f} y:{:>8.3f} z:{:>8.3f}'.format(*lsm.gyro())) print("") time.sleep_ms(100) """ import array _WHO_AM_I = const(0xF) _CTRL_REG1_G = const(0x10) _INT_GEN_SRC_G = const(0x14) _OUT_TEMP = const(0x15) _OUT_G = const(0x18) _CTRL_REG4_G = const(0x1E) _STATUS_REG = const(0x27) _OUT_XL = const(0x28) _FIFO_CTRL_REG = const(0x2E) _FIFO_SRC = const(0x2F) _OFFSET_REG_X_M = const(0x05) _CTRL_REG1_M = const(0x20) _OUT_M = const(0x28) _SCALE_GYRO = const(((245, 0), (500, 1), (2000, 3))) _SCALE_ACCEL = const(((2, 0), (4, 2), (8, 3), (16, 1))) class LSM9DS1: def __init__(self, i2c, address_gyro=0x6B, address_magnet=0x1E): self.i2c = i2c self.address_gyro = address_gyro self.address_magnet = address_magnet # check id's of accelerometer/gyro and magnetometer if (self.magent_id() != b"=") or (self.gyro_id() != b"h"): raise OSError( "Invalid LSM9DS1 device, using address {}/{}".format(address_gyro, address_magnet) ) # allocate scratch buffer for efficient conversions and memread op's self.scratch = array.array("B", [0, 0, 0, 0, 0, 0]) self.scratch_int = array.array("h", [0, 0, 0]) self.init_gyro_accel() self.init_magnetometer() def init_gyro_accel(self, sample_rate=6, scale_gyro=0, scale_accel=0): """Initalizes Gyro and Accelerator. sample rate: 0-6 (off, 14.9Hz, 59.5Hz, 119Hz, 238Hz, 476Hz, 952Hz) scale_gyro: 0-2 (245dps, 500dps, 2000dps ) scale_accel: 0-3 (+/-2g, +/-4g, +/-8g, +-16g) """ assert sample_rate <= 6, "invalid sampling rate: %d" % sample_rate assert scale_gyro <= 2, "invalid gyro scaling: %d" % scale_gyro assert scale_accel <= 3, "invalid accelerometer scaling: %d" % scale_accel i2c = self.i2c addr = self.address_gyro mv = memoryview(self.scratch) # angular control registers 1-3 / Orientation mv[0] = ((sample_rate & 0x07) << 5) | ((_SCALE_GYRO[scale_gyro][1] & 0x3) << 3) mv[1:4] = b"\x00\x00\x00" i2c.writeto_mem(addr, _CTRL_REG1_G, mv[:5]) # ctrl4 - enable x,y,z, outputs, no irq latching, no 4D # ctrl5 - enable all axes, no decimation # ctrl6 - set scaling and sample rate of accel # ctrl7,8 - leave at default values # ctrl9 - FIFO enabled mv[0] = mv[1] = 0x38 mv[2] = ((sample_rate & 7) << 5) | ((_SCALE_ACCEL[scale_accel][1] & 0x3) << 3) mv[3] = 0x00 mv[4] = 0x4 mv[5] = 0x2 i2c.writeto_mem(addr, _CTRL_REG4_G, mv[:6]) # fifo: use continous mode (overwrite old data if overflow) i2c.writeto_mem(addr, _FIFO_CTRL_REG, b"\x00") i2c.writeto_mem(addr, _FIFO_CTRL_REG, b"\xc0") self.scale_gyro = 32768 / _SCALE_GYRO[scale_gyro][0] self.scale_accel = 32768 / _SCALE_ACCEL[scale_accel][0] def init_magnetometer(self, sample_rate=7, scale_magnet=0): """ sample rates = 0-7 (0.625, 1.25, 2.5, 5, 10, 20, 40, 80Hz) scaling = 0-3 (+/-4, +/-8, +/-12, +/-16 Gauss) """ assert sample_rate < 8, "invalid sample rate: %d (0-7)" % sample_rate assert scale_magnet < 4, "invalid scaling: %d (0-3)" % scale_magnet i2c = self.i2c addr = self.address_magnet mv = memoryview(self.scratch) mv[0] = 0x40 | (sample_rate << 2) # ctrl1: high performance mode mv[1] = scale_magnet << 5 # ctrl2: scale, normal mode, no reset mv[2] = 0x00 # ctrl3: continous conversion, no low power, I2C mv[3] = 0x08 # ctrl4: high performance z-axis mv[4] = 0x00 # ctr5: no fast read, no block update i2c.writeto_mem(addr, _CTRL_REG1_M, mv[:5]) self.scale_factor_magnet = 32768 / ((scale_magnet + 1) * 4) def calibrate_magnet(self, offset): """ offset is a magnet vecor that will be substracted by the magnetometer for each measurement. It is written to the magnetometer's offset register """ offset = [int(i * self.scale_factor_magnet) for i in offset] mv = memoryview(self.scratch) mv[0] = offset[0] & 0xFF mv[1] = offset[0] >> 8 mv[2] = offset[1] & 0xFF mv[3] = offset[1] >> 8 mv[4] = offset[2] & 0xFF mv[5] = offset[2] >> 8 self.i2c.writeto_mem(self.address_magnet, _OFFSET_REG_X_M, mv[:6]) def gyro_id(self): return self.i2c.readfrom_mem(self.address_gyro, _WHO_AM_I, 1) def magent_id(self): return self.i2c.readfrom_mem(self.address_magnet, _WHO_AM_I, 1) def magnet(self): """Returns magnetometer vector in gauss. raw_values: if True, the non-scaled adc values are returned """ mv = memoryview(self.scratch_int) f = self.scale_factor_magnet self.i2c.readfrom_mem_into(self.address_magnet, _OUT_M | 0x80, mv) return (mv[0] / f, mv[1] / f, mv[2] / f) def gyro(self): """Returns gyroscope vector in degrees/sec.""" mv = memoryview(self.scratch_int) f = self.scale_gyro self.i2c.readfrom_mem_into(self.address_gyro, _OUT_G | 0x80, mv) return (mv[0] / f, mv[1] / f, mv[2] / f) def accel(self): """Returns acceleration vector in gravity units (9.81m/s^2).""" mv = memoryview(self.scratch_int) f = self.scale_accel self.i2c.readfrom_mem_into(self.address_gyro, _OUT_XL | 0x80, mv) return (mv[0] / f, mv[1] / f, mv[2] / f) def iter_accel_gyro(self): """A generator that returns tuples of (gyro,accelerometer) data from the fifo.""" while True: fifo_state = int.from_bytes( self.i2c.readfrom_mem(self.address_gyro, _FIFO_SRC, 1), "big" ) if fifo_state & 0x3F: # print("Available samples=%d" % (fifo_state & 0x1f)) yield self.gyro(), self.accel() else: break