#include #include #include #include "misc.h" #include "nlr.h" #include "mpconfig.h" #include "qstr.h" #include "obj.h" #include "runtime.h" #include "adc.h" #include "pin.h" #include "genhdr/pins.h" #include "timer.h" // Usage Model: // // adc = pyb.ADC(pin) // val = adc.read() // // adc = pyb.ADC_all(resolution) // val = adc.read_channel(channel) // val = adc.read_core_temp() // val = adc.read_core_vbat() // val = adc.read_core_vref() /* ADC defintions */ #define ADCx (ADC1) #define ADCx_CLK_ENABLE __ADC1_CLK_ENABLE #define ADC_NUM_CHANNELS (19) #define ADC_NUM_GPIO_CHANNELS (16) #if defined(STM32F405xx) || defined(STM32F415xx) || \ defined(STM32F407xx) || defined(STM32F417xx) || \ defined(STM32F401xC) || defined(STM32F401xE) #define VBAT_DIV (2) #elif defined(STM32F427xx) || defined(STM32F429xx) || \ defined(STM32F437xx) || defined(STM32F439xx) #define VBAT_DIV (4) #endif /* Core temperature sensor definitions */ #define CORE_TEMP_V25 (943) /* (0.76v/3.3v)*(2^ADC resoultion) */ #define CORE_TEMP_AVG_SLOPE (3) /* (2.5mv/3.3v)*(2^ADC resoultion) */ typedef struct _pyb_obj_adc_t { mp_obj_base_t base; mp_obj_t pin_name; int channel; ADC_HandleTypeDef handle; } pyb_obj_adc_t; void adc_init_single(pyb_obj_adc_t *adc_obj) { if (!IS_ADC_CHANNEL(adc_obj->channel)) { return; } if (adc_obj->channel < ADC_NUM_GPIO_CHANNELS) { // Channels 0-16 correspond to real pins. Configure the GPIO pin in // ADC mode. const pin_obj_t *pin = pin_adc1[adc_obj->channel]; GPIO_InitTypeDef GPIO_InitStructure; GPIO_InitStructure.Pin = pin->pin_mask; GPIO_InitStructure.Mode = GPIO_MODE_ANALOG; GPIO_InitStructure.Pull = GPIO_NOPULL; HAL_GPIO_Init(pin->gpio, &GPIO_InitStructure); } ADCx_CLK_ENABLE(); ADC_HandleTypeDef *adcHandle = &adc_obj->handle; adcHandle->Instance = ADCx; adcHandle->Init.ClockPrescaler = ADC_CLOCKPRESCALER_PCLK_DIV2; adcHandle->Init.Resolution = ADC_RESOLUTION12b; adcHandle->Init.ScanConvMode = DISABLE; adcHandle->Init.ContinuousConvMode = DISABLE; adcHandle->Init.DiscontinuousConvMode = DISABLE; adcHandle->Init.NbrOfDiscConversion = 0; adcHandle->Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_NONE; adcHandle->Init.ExternalTrigConv = ADC_EXTERNALTRIGCONV_T1_CC1; adcHandle->Init.DataAlign = ADC_DATAALIGN_RIGHT; adcHandle->Init.NbrOfConversion = 1; adcHandle->Init.DMAContinuousRequests = DISABLE; adcHandle->Init.EOCSelection = DISABLE; HAL_ADC_Init(adcHandle); ADC_ChannelConfTypeDef sConfig; sConfig.Channel = adc_obj->channel; sConfig.Rank = 1; sConfig.SamplingTime = ADC_SAMPLETIME_15CYCLES; sConfig.Offset = 0; HAL_ADC_ConfigChannel(adcHandle, &sConfig); } uint32_t adc_read_channel(ADC_HandleTypeDef *adcHandle) { uint32_t rawValue = 0; HAL_ADC_Start(adcHandle); if (HAL_ADC_PollForConversion(adcHandle, 10) == HAL_OK && HAL_ADC_GetState(adcHandle) == HAL_ADC_STATE_EOC_REG) { rawValue = HAL_ADC_GetValue(adcHandle); } HAL_ADC_Stop(adcHandle); return rawValue; } /******************************************************************************/ /* Micro Python bindings : adc object (single channel) */ STATIC void adc_print(void (*print)(void *env, const char *fmt, ...), void *env, mp_obj_t self_in, mp_print_kind_t kind) { pyb_obj_adc_t *self = self_in; print(env, "pin_name, PRINT_STR); print(env, " channel=%lu>", self->channel); } STATIC mp_obj_t adc_make_new(mp_obj_t type_in, uint n_args, uint n_kw, const mp_obj_t *args) { // check number of arguments mp_check_nargs(n_args, 1, 1, n_kw, false); // 1st argument is the pin name mp_obj_t pin_obj = args[0]; uint32_t channel; if (MP_OBJ_IS_INT(pin_obj)) { channel = mp_obj_get_int(pin_obj); } else { const pin_obj_t *pin = pin_map_user_obj(pin_obj); if ((pin->adc_num & PIN_ADC1) == 0) { // No ADC1 function on that pin nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "pin %s does not have ADC capabilities", pin->name)); } channel = pin->adc_channel; } if (!IS_ADC_CHANNEL(channel)) { nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "Not a valid ADC Channel: %d", channel)); } if (pin_adc1[channel] == NULL) { nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "Channel %d not available on this board", channel)); } pyb_obj_adc_t *o = m_new_obj(pyb_obj_adc_t); memset(o, 0, sizeof(*o)); o->base.type = &pyb_adc_type; o->pin_name = pin_obj; o->channel = channel; adc_init_single(o); return o; } STATIC mp_obj_t adc_read(mp_obj_t self_in) { pyb_obj_adc_t *self = self_in; uint32_t data = adc_read_channel(&self->handle); return mp_obj_new_int(data); } STATIC MP_DEFINE_CONST_FUN_OBJ_1(adc_read_obj, adc_read); STATIC mp_obj_t adc_read_timed(mp_obj_t self_in, mp_obj_t buf_in, mp_obj_t freq_in) { pyb_obj_adc_t *self = self_in; buffer_info_t bufinfo; mp_get_buffer_raise(buf_in, &bufinfo); // Init TIM6 at the required frequency (in Hz) timer_tim6_init(mp_obj_get_int(freq_in)); // Start timer HAL_TIM_Base_Start(&TIM6_Handle); // This uses the timer in polling mode to do the sampling // TODO use DMA for (uint i = 0; i < bufinfo.len; i++) { // Wait for the timer to trigger while (__HAL_TIM_GET_FLAG(&TIM6_Handle, TIM_FLAG_UPDATE) == RESET) { } __HAL_TIM_CLEAR_FLAG(&TIM6_Handle, TIM_FLAG_UPDATE); ((byte*)bufinfo.buf)[i] = adc_read_channel(&self->handle) >> 4; } // Stop timer HAL_TIM_Base_Stop(&TIM6_Handle); return mp_obj_new_int(bufinfo.len); } STATIC MP_DEFINE_CONST_FUN_OBJ_3(adc_read_timed_obj, adc_read_timed); STATIC const mp_map_elem_t adc_locals_dict_table[] = { { MP_OBJ_NEW_QSTR(MP_QSTR_read), (mp_obj_t)&adc_read_obj}, { MP_OBJ_NEW_QSTR(MP_QSTR_read_timed), (mp_obj_t)&adc_read_timed_obj}, }; STATIC MP_DEFINE_CONST_DICT(adc_locals_dict, adc_locals_dict_table); const mp_obj_type_t pyb_adc_type = { { &mp_type_type }, .name = MP_QSTR_ADC, .print = adc_print, .make_new = adc_make_new, .locals_dict = (mp_obj_t)&adc_locals_dict, }; /******************************************************************************/ /* adc all object */ typedef struct _pyb_obj_adc_all_t { mp_obj_base_t base; ADC_HandleTypeDef handle; } pyb_obj_adc_all_t; void adc_init_all(pyb_obj_adc_all_t *adc_all, uint32_t resolution) { switch (resolution) { case 6: resolution = ADC_RESOLUTION6b; break; case 8: resolution = ADC_RESOLUTION8b; break; case 10: resolution = ADC_RESOLUTION10b; break; case 12: resolution = ADC_RESOLUTION12b; break; default: nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "resolution %d not supported", resolution)); } for (uint32_t channel = 0; channel < ADC_NUM_GPIO_CHANNELS; channel++) { // Channels 0-16 correspond to real pins. Configure the GPIO pin in // ADC mode. const pin_obj_t *pin = pin_adc1[channel]; GPIO_InitTypeDef GPIO_InitStructure; GPIO_InitStructure.Pin = pin->pin_mask; GPIO_InitStructure.Mode = GPIO_MODE_ANALOG; GPIO_InitStructure.Pull = GPIO_NOPULL; HAL_GPIO_Init(pin->gpio, &GPIO_InitStructure); } ADCx_CLK_ENABLE(); ADC_HandleTypeDef *adcHandle = &adc_all->handle; adcHandle->Instance = ADCx; adcHandle->Init.ClockPrescaler = ADC_CLOCKPRESCALER_PCLK_DIV2; adcHandle->Init.Resolution = resolution; adcHandle->Init.ScanConvMode = DISABLE; adcHandle->Init.ContinuousConvMode = DISABLE; adcHandle->Init.DiscontinuousConvMode = DISABLE; adcHandle->Init.NbrOfDiscConversion = 0; adcHandle->Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_NONE; adcHandle->Init.ExternalTrigConv = ADC_EXTERNALTRIGCONV_T1_CC1; adcHandle->Init.DataAlign = ADC_DATAALIGN_RIGHT; adcHandle->Init.NbrOfConversion = 1; adcHandle->Init.DMAContinuousRequests = DISABLE; adcHandle->Init.EOCSelection = DISABLE; HAL_ADC_Init(adcHandle); } uint32_t adc_config_and_read_channel(ADC_HandleTypeDef *adcHandle, uint32_t channel) { ADC_ChannelConfTypeDef sConfig; sConfig.Channel = channel; sConfig.Rank = 1; sConfig.SamplingTime = ADC_SAMPLETIME_15CYCLES; sConfig.Offset = 0; HAL_ADC_ConfigChannel(adcHandle, &sConfig); return adc_read_channel(adcHandle); } int adc_get_resolution(ADC_HandleTypeDef *adcHandle) { uint32_t res_reg = __HAL_ADC_GET_RESOLUTION(adcHandle); switch (res_reg) { case ADC_RESOLUTION6b: return 6; case ADC_RESOLUTION8b: return 8; case ADC_RESOLUTION10b: return 10; } return 12; } int adc_read_core_temp(ADC_HandleTypeDef *adcHandle) { int32_t raw_value = adc_config_and_read_channel(adcHandle, ADC_CHANNEL_TEMPSENSOR); // Note: constants assume 12-bit resolution, so we scale the raw value to // be 12-bits. raw_value <<= (12 - adc_get_resolution(adcHandle)); return ((raw_value - CORE_TEMP_V25) / CORE_TEMP_AVG_SLOPE) + 25; } float adc_read_core_vbat(ADC_HandleTypeDef *adcHandle) { uint32_t raw_value = adc_config_and_read_channel(adcHandle, ADC_CHANNEL_VBAT); // Note: constants assume 12-bit resolution, so we scale the raw value to // be 12-bits. raw_value <<= (12 - adc_get_resolution(adcHandle)); return raw_value * VBAT_DIV / 4096.0f * 3.3f; } float adc_read_core_vref(ADC_HandleTypeDef *adcHandle) { uint32_t raw_value = adc_config_and_read_channel(adcHandle, ADC_CHANNEL_VREFINT); // Note: constants assume 12-bit resolution, so we scale the raw value to // be 12-bits. raw_value <<= (12 - adc_get_resolution(adcHandle)); return raw_value * VBAT_DIV / 4096.0f * 3.3f; } /******************************************************************************/ /* Micro Python bindings : adc_all object */ STATIC void adc_all_print(void (*print)(void *env, const char *fmt, ...), void *env, mp_obj_t self_in, mp_print_kind_t kind) { print(env, ""); } STATIC mp_obj_t adc_all_read_channel(mp_obj_t self_in, mp_obj_t channel) { pyb_obj_adc_all_t *self = self_in; uint32_t chan = mp_obj_get_int(channel); uint32_t data = adc_config_and_read_channel(&self->handle, chan); return mp_obj_new_int(data); } STATIC mp_obj_t adc_all_read_core_temp(mp_obj_t self_in) { pyb_obj_adc_all_t *self = self_in; int data = adc_read_core_temp(&self->handle); return mp_obj_new_int(data); } STATIC mp_obj_t adc_all_read_core_vbat(mp_obj_t self_in) { pyb_obj_adc_all_t *self = self_in; float data = adc_read_core_vbat(&self->handle); return mp_obj_new_float(data); } STATIC mp_obj_t adc_all_read_core_vref(mp_obj_t self_in) { pyb_obj_adc_all_t *self = self_in; float data = adc_read_core_vref(&self->handle); return mp_obj_new_float(data); } STATIC MP_DEFINE_CONST_FUN_OBJ_2(adc_all_read_channel_obj, adc_all_read_channel); STATIC MP_DEFINE_CONST_FUN_OBJ_1(adc_all_read_core_temp_obj, adc_all_read_core_temp); STATIC MP_DEFINE_CONST_FUN_OBJ_1(adc_all_read_core_vbat_obj, adc_all_read_core_vbat); STATIC MP_DEFINE_CONST_FUN_OBJ_1(adc_all_read_core_vref_obj, adc_all_read_core_vref); STATIC const mp_map_elem_t adc_all_locals_dict_table[] = { { MP_OBJ_NEW_QSTR(MP_QSTR_read_channel), (mp_obj_t) &adc_all_read_channel_obj}, { MP_OBJ_NEW_QSTR(MP_QSTR_read_core_temp), (mp_obj_t)&adc_all_read_core_temp_obj}, { MP_OBJ_NEW_QSTR(MP_QSTR_read_core_vbat), (mp_obj_t)&adc_all_read_core_vbat_obj}, { MP_OBJ_NEW_QSTR(MP_QSTR_read_core_vref), (mp_obj_t)&adc_all_read_core_vref_obj}, }; STATIC MP_DEFINE_CONST_DICT(adc_all_locals_dict, adc_all_locals_dict_table); STATIC const mp_obj_type_t adc_all_type = { { &mp_type_type }, .name = MP_QSTR_ADC, .print = adc_all_print, .locals_dict = (mp_obj_t)&adc_all_locals_dict, }; STATIC mp_obj_t pyb_ADC_all(mp_obj_t resolution) { pyb_obj_adc_all_t *o = m_new_obj(pyb_obj_adc_all_t); o->base.type = &adc_all_type; adc_init_all(o, mp_obj_get_int(resolution)); return o; } MP_DEFINE_CONST_FUN_OBJ_1(pyb_ADC_all_obj, pyb_ADC_all);