/* * This file is part of the MicroPython project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2013-2019 Damien P. George * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include #include #include #include #include #include "py/mpstate.h" #include "py/emit.h" #include "py/bc0.h" #if MICROPY_ENABLE_COMPILER #define BYTES_FOR_INT ((MP_BYTES_PER_OBJ_WORD * 8 + 6) / 7) #define DUMMY_DATA_SIZE (BYTES_FOR_INT) struct _emit_t { // Accessed as mp_obj_t, so must be aligned as such, and we rely on the // memory allocator returning a suitably aligned pointer. // Should work for cases when mp_obj_t is 64-bit on a 32-bit machine. byte dummy_data[DUMMY_DATA_SIZE]; pass_kind_t pass : 8; mp_uint_t last_emit_was_return_value : 8; int stack_size; scope_t *scope; mp_uint_t last_source_line_offset; mp_uint_t last_source_line; mp_uint_t max_num_labels; mp_uint_t *label_offsets; size_t code_info_offset; size_t code_info_size; size_t bytecode_offset; size_t bytecode_size; byte *code_base; // stores both byte code and code info size_t n_info; size_t n_cell; #if MICROPY_PERSISTENT_CODE uint16_t ct_cur_obj; uint16_t ct_num_obj; uint16_t ct_cur_raw_code; #endif mp_uint_t *const_table; }; emit_t *emit_bc_new(void) { emit_t *emit = m_new0(emit_t, 1); return emit; } void emit_bc_set_max_num_labels(emit_t *emit, mp_uint_t max_num_labels) { emit->max_num_labels = max_num_labels; emit->label_offsets = m_new(mp_uint_t, emit->max_num_labels); } void emit_bc_free(emit_t *emit) { m_del(mp_uint_t, emit->label_offsets, emit->max_num_labels); m_del_obj(emit_t, emit); } typedef byte *(*emit_allocator_t)(emit_t *emit, int nbytes); STATIC void emit_write_uint(emit_t *emit, emit_allocator_t allocator, mp_uint_t val) { // We store each 7 bits in a separate byte, and that's how many bytes needed byte buf[BYTES_FOR_INT]; byte *p = buf + sizeof(buf); // We encode in little-ending order, but store in big-endian, to help decoding do { *--p = val & 0x7f; val >>= 7; } while (val != 0); byte *c = allocator(emit, buf + sizeof(buf) - p); while (p != buf + sizeof(buf) - 1) { *c++ = *p++ | 0x80; } *c = *p; } // all functions must go through this one to emit code info STATIC byte *emit_get_cur_to_write_code_info(emit_t *emit, int num_bytes_to_write) { if (emit->pass < MP_PASS_EMIT) { emit->code_info_offset += num_bytes_to_write; return emit->dummy_data; } else { assert(emit->code_info_offset + num_bytes_to_write <= emit->code_info_size); byte *c = emit->code_base + emit->code_info_offset; emit->code_info_offset += num_bytes_to_write; return c; } } STATIC void emit_write_code_info_byte(emit_t *emit, byte val) { *emit_get_cur_to_write_code_info(emit, 1) = val; } STATIC void emit_write_code_info_qstr(emit_t *emit, qstr qst) { #if MICROPY_PERSISTENT_CODE assert((qst >> 16) == 0); byte *c = emit_get_cur_to_write_code_info(emit, 2); c[0] = qst; c[1] = qst >> 8; #else emit_write_uint(emit, emit_get_cur_to_write_code_info, qst); #endif } #if MICROPY_ENABLE_SOURCE_LINE STATIC void emit_write_code_info_bytes_lines(emit_t *emit, mp_uint_t bytes_to_skip, mp_uint_t lines_to_skip) { assert(bytes_to_skip > 0 || lines_to_skip > 0); while (bytes_to_skip > 0 || lines_to_skip > 0) { mp_uint_t b, l; if (lines_to_skip <= 6 || bytes_to_skip > 0xf) { // use 0b0LLBBBBB encoding b = MIN(bytes_to_skip, 0x1f); if (b < bytes_to_skip) { // we can't skip any lines until we skip all the bytes l = 0; } else { l = MIN(lines_to_skip, 0x3); } *emit_get_cur_to_write_code_info(emit, 1) = b | (l << 5); } else { // use 0b1LLLBBBB 0bLLLLLLLL encoding (l's LSB in second byte) b = MIN(bytes_to_skip, 0xf); l = MIN(lines_to_skip, 0x7ff); byte *ci = emit_get_cur_to_write_code_info(emit, 2); ci[0] = 0x80 | b | ((l >> 4) & 0x70); ci[1] = l; } bytes_to_skip -= b; lines_to_skip -= l; } } #endif // all functions must go through this one to emit byte code STATIC byte *emit_get_cur_to_write_bytecode(emit_t *emit, int num_bytes_to_write) { if (emit->pass < MP_PASS_EMIT) { emit->bytecode_offset += num_bytes_to_write; return emit->dummy_data; } else { assert(emit->bytecode_offset + num_bytes_to_write <= emit->bytecode_size); byte *c = emit->code_base + emit->code_info_size + emit->bytecode_offset; emit->bytecode_offset += num_bytes_to_write; return c; } } STATIC void emit_write_bytecode_raw_byte(emit_t *emit, byte b1) { byte *c = emit_get_cur_to_write_bytecode(emit, 1); c[0] = b1; } STATIC void emit_write_bytecode_byte(emit_t *emit, int stack_adj, byte b1) { mp_emit_bc_adjust_stack_size(emit, stack_adj); byte *c = emit_get_cur_to_write_bytecode(emit, 1); c[0] = b1; } // Similar to emit_write_bytecode_uint(), just some extra handling to encode sign STATIC void emit_write_bytecode_byte_int(emit_t *emit, int stack_adj, byte b1, mp_int_t num) { emit_write_bytecode_byte(emit, stack_adj, b1); // We store each 7 bits in a separate byte, and that's how many bytes needed byte buf[BYTES_FOR_INT]; byte *p = buf + sizeof(buf); // We encode in little-ending order, but store in big-endian, to help decoding do { *--p = num & 0x7f; num >>= 7; } while (num != 0 && num != -1); // Make sure that highest bit we stored (mask 0x40) matches sign // of the number. If not, store extra byte just to encode sign if (num == -1 && (*p & 0x40) == 0) { *--p = 0x7f; } else if (num == 0 && (*p & 0x40) != 0) { *--p = 0; } byte *c = emit_get_cur_to_write_bytecode(emit, buf + sizeof(buf) - p); while (p != buf + sizeof(buf) - 1) { *c++ = *p++ | 0x80; } *c = *p; } STATIC void emit_write_bytecode_byte_uint(emit_t *emit, int stack_adj, byte b, mp_uint_t val) { emit_write_bytecode_byte(emit, stack_adj, b); emit_write_uint(emit, emit_get_cur_to_write_bytecode, val); } #if MICROPY_PERSISTENT_CODE STATIC void emit_write_bytecode_byte_const(emit_t *emit, int stack_adj, byte b, mp_uint_t n, mp_uint_t c) { if (emit->pass == MP_PASS_EMIT) { emit->const_table[n] = c; } emit_write_bytecode_byte_uint(emit, stack_adj, b, n); } #endif STATIC void emit_write_bytecode_byte_qstr(emit_t *emit, int stack_adj, byte b, qstr qst) { #if MICROPY_PERSISTENT_CODE assert((qst >> 16) == 0); mp_emit_bc_adjust_stack_size(emit, stack_adj); byte *c = emit_get_cur_to_write_bytecode(emit, 3); c[0] = b; c[1] = qst; c[2] = qst >> 8; #else emit_write_bytecode_byte_uint(emit, stack_adj, b, qst); #endif } STATIC void emit_write_bytecode_byte_obj(emit_t *emit, int stack_adj, byte b, mp_obj_t obj) { #if MICROPY_PERSISTENT_CODE emit_write_bytecode_byte_const(emit, stack_adj, b, emit->scope->num_pos_args + emit->scope->num_kwonly_args + emit->ct_cur_obj++, (mp_uint_t)obj); #else // aligns the pointer so it is friendly to GC emit_write_bytecode_byte(emit, stack_adj, b); emit->bytecode_offset = (size_t)MP_ALIGN(emit->bytecode_offset, sizeof(mp_obj_t)); mp_obj_t *c = (mp_obj_t *)emit_get_cur_to_write_bytecode(emit, sizeof(mp_obj_t)); // Verify thar c is already uint-aligned assert(c == MP_ALIGN(c, sizeof(mp_obj_t))); *c = obj; #endif } STATIC void emit_write_bytecode_byte_raw_code(emit_t *emit, int stack_adj, byte b, mp_raw_code_t *rc) { #if MICROPY_PERSISTENT_CODE emit_write_bytecode_byte_const(emit, stack_adj, b, emit->scope->num_pos_args + emit->scope->num_kwonly_args + emit->ct_num_obj + emit->ct_cur_raw_code++, (mp_uint_t)(uintptr_t)rc); #else // aligns the pointer so it is friendly to GC emit_write_bytecode_byte(emit, stack_adj, b); emit->bytecode_offset = (size_t)MP_ALIGN(emit->bytecode_offset, sizeof(void *)); void **c = (void **)emit_get_cur_to_write_bytecode(emit, sizeof(void *)); // Verify thar c is already uint-aligned assert(c == MP_ALIGN(c, sizeof(void *))); *c = rc; #endif #if MICROPY_PY_SYS_SETTRACE rc->line_of_definition = emit->last_source_line; #endif } // unsigned labels are relative to ip following this instruction, stored as 16 bits STATIC void emit_write_bytecode_byte_unsigned_label(emit_t *emit, int stack_adj, byte b1, mp_uint_t label) { mp_emit_bc_adjust_stack_size(emit, stack_adj); mp_uint_t bytecode_offset; if (emit->pass < MP_PASS_EMIT) { bytecode_offset = 0; } else { bytecode_offset = emit->label_offsets[label] - emit->bytecode_offset - 3; } byte *c = emit_get_cur_to_write_bytecode(emit, 3); c[0] = b1; c[1] = bytecode_offset; c[2] = bytecode_offset >> 8; } // signed labels are relative to ip following this instruction, stored as 16 bits, in excess STATIC void emit_write_bytecode_byte_signed_label(emit_t *emit, int stack_adj, byte b1, mp_uint_t label) { mp_emit_bc_adjust_stack_size(emit, stack_adj); int bytecode_offset; if (emit->pass < MP_PASS_EMIT) { bytecode_offset = 0; } else { bytecode_offset = emit->label_offsets[label] - emit->bytecode_offset - 3 + 0x8000; } byte *c = emit_get_cur_to_write_bytecode(emit, 3); c[0] = b1; c[1] = bytecode_offset; c[2] = bytecode_offset >> 8; } void mp_emit_bc_start_pass(emit_t *emit, pass_kind_t pass, scope_t *scope) { emit->pass = pass; emit->stack_size = 0; emit->last_emit_was_return_value = false; emit->scope = scope; emit->last_source_line_offset = 0; emit->last_source_line = 1; #ifndef NDEBUG // With debugging enabled labels are checked for unique assignment if (pass < MP_PASS_EMIT && emit->label_offsets != NULL) { memset(emit->label_offsets, -1, emit->max_num_labels * sizeof(mp_uint_t)); } #endif emit->bytecode_offset = 0; emit->code_info_offset = 0; // Write local state size, exception stack size, scope flags and number of arguments { mp_uint_t n_state = scope->num_locals + scope->stack_size; if (n_state == 0) { // Need at least 1 entry in the state, in the case an exception is // propagated through this function, the exception is returned in // the highest slot in the state (fastn[0], see vm.c). n_state = 1; } #if MICROPY_DEBUG_VM_STACK_OVERFLOW // An extra slot in the stack is needed to detect VM stack overflow n_state += 1; #endif size_t n_exc_stack = scope->exc_stack_size; MP_BC_PRELUDE_SIG_ENCODE(n_state, n_exc_stack, scope, emit_write_code_info_byte, emit); } // Write number of cells and size of the source code info if (pass >= MP_PASS_CODE_SIZE) { MP_BC_PRELUDE_SIZE_ENCODE(emit->n_info, emit->n_cell, emit_write_code_info_byte, emit); } emit->n_info = emit->code_info_offset; // Write the name and source file of this function. emit_write_code_info_qstr(emit, scope->simple_name); emit_write_code_info_qstr(emit, scope->source_file); #if MICROPY_PERSISTENT_CODE emit->ct_cur_obj = 0; emit->ct_cur_raw_code = 0; #endif if (pass == MP_PASS_EMIT) { // Write argument names (needed to resolve positional args passed as // keywords). We store them as full word-sized objects for efficient access // in mp_setup_code_state this is the start of the prelude and is guaranteed // to be aligned on a word boundary. // For a given argument position (indexed by i) we need to find the // corresponding id_info which is a parameter, as it has the correct // qstr name to use as the argument name. Note that it's not a simple // 1-1 mapping (ie i!=j in general) because of possible closed-over // variables. In the case that the argument i has no corresponding // parameter we use "*" as its name (since no argument can ever be named // "*"). We could use a blank qstr but "*" is better for debugging. // Note: there is some wasted RAM here for the case of storing a qstr // for each closed-over variable, and maybe there is a better way to do // it, but that would require changes to mp_setup_code_state. for (int i = 0; i < scope->num_pos_args + scope->num_kwonly_args; i++) { qstr qst = MP_QSTR__star_; for (int j = 0; j < scope->id_info_len; ++j) { id_info_t *id = &scope->id_info[j]; if ((id->flags & ID_FLAG_IS_PARAM) && id->local_num == i) { qst = id->qst; break; } } emit->const_table[i] = (mp_uint_t)MP_OBJ_NEW_QSTR(qst); } } } void mp_emit_bc_end_pass(emit_t *emit) { if (emit->pass == MP_PASS_SCOPE) { return; } // check stack is back to zero size assert(emit->stack_size == 0); emit_write_code_info_byte(emit, 0); // end of line number info // Calculate size of source code info section emit->n_info = emit->code_info_offset - emit->n_info; // Emit closure section of prelude emit->n_cell = 0; for (size_t i = 0; i < emit->scope->id_info_len; ++i) { id_info_t *id = &emit->scope->id_info[i]; if (id->kind == ID_INFO_KIND_CELL) { assert(id->local_num <= 255); emit_write_code_info_byte(emit, id->local_num); // write the local which should be converted to a cell ++emit->n_cell; } } #if MICROPY_PERSISTENT_CODE assert(emit->pass <= MP_PASS_STACK_SIZE || (emit->ct_num_obj == emit->ct_cur_obj)); emit->ct_num_obj = emit->ct_cur_obj; #endif if (emit->pass == MP_PASS_CODE_SIZE) { #if !MICROPY_PERSISTENT_CODE // so bytecode is aligned emit->code_info_offset = (size_t)MP_ALIGN(emit->code_info_offset, sizeof(mp_uint_t)); #endif // calculate size of total code-info + bytecode, in bytes emit->code_info_size = emit->code_info_offset; emit->bytecode_size = emit->bytecode_offset; emit->code_base = m_new0(byte, emit->code_info_size + emit->bytecode_size); #if MICROPY_PERSISTENT_CODE emit->const_table = m_new0(mp_uint_t, emit->scope->num_pos_args + emit->scope->num_kwonly_args + emit->ct_cur_obj + emit->ct_cur_raw_code); #else emit->const_table = m_new0(mp_uint_t, emit->scope->num_pos_args + emit->scope->num_kwonly_args); #endif } else if (emit->pass == MP_PASS_EMIT) { mp_emit_glue_assign_bytecode(emit->scope->raw_code, emit->code_base, #if MICROPY_PERSISTENT_CODE_SAVE || MICROPY_DEBUG_PRINTERS emit->code_info_size + emit->bytecode_size, #endif emit->const_table, #if MICROPY_PERSISTENT_CODE_SAVE emit->ct_cur_obj, emit->ct_cur_raw_code, #endif emit->scope->scope_flags); } } bool mp_emit_bc_last_emit_was_return_value(emit_t *emit) { return emit->last_emit_was_return_value; } void mp_emit_bc_adjust_stack_size(emit_t *emit, mp_int_t delta) { if (emit->pass == MP_PASS_SCOPE) { return; } assert((mp_int_t)emit->stack_size + delta >= 0); emit->stack_size += delta; if (emit->stack_size > emit->scope->stack_size) { emit->scope->stack_size = emit->stack_size; } emit->last_emit_was_return_value = false; } void mp_emit_bc_set_source_line(emit_t *emit, mp_uint_t source_line) { #if MICROPY_ENABLE_SOURCE_LINE if (MP_STATE_VM(mp_optimise_value) >= 3) { // If we compile with -O3, don't store line numbers. return; } if (source_line > emit->last_source_line) { mp_uint_t bytes_to_skip = emit->bytecode_offset - emit->last_source_line_offset; mp_uint_t lines_to_skip = source_line - emit->last_source_line; emit_write_code_info_bytes_lines(emit, bytes_to_skip, lines_to_skip); emit->last_source_line_offset = emit->bytecode_offset; emit->last_source_line = source_line; } #else (void)emit; (void)source_line; #endif } void mp_emit_bc_label_assign(emit_t *emit, mp_uint_t l) { mp_emit_bc_adjust_stack_size(emit, 0); if (emit->pass == MP_PASS_SCOPE) { return; } assert(l < emit->max_num_labels); if (emit->pass < MP_PASS_EMIT) { // assign label offset assert(emit->label_offsets[l] == (mp_uint_t)-1); emit->label_offsets[l] = emit->bytecode_offset; } else { // ensure label offset has not changed from MP_PASS_CODE_SIZE to MP_PASS_EMIT assert(emit->label_offsets[l] == emit->bytecode_offset); } } void mp_emit_bc_import(emit_t *emit, qstr qst, int kind) { MP_STATIC_ASSERT(MP_BC_IMPORT_NAME + MP_EMIT_IMPORT_NAME == MP_BC_IMPORT_NAME); MP_STATIC_ASSERT(MP_BC_IMPORT_NAME + MP_EMIT_IMPORT_FROM == MP_BC_IMPORT_FROM); int stack_adj = kind == MP_EMIT_IMPORT_FROM ? 1 : -1; if (kind == MP_EMIT_IMPORT_STAR) { emit_write_bytecode_byte(emit, stack_adj, MP_BC_IMPORT_STAR); } else { emit_write_bytecode_byte_qstr(emit, stack_adj, MP_BC_IMPORT_NAME + kind, qst); } } void mp_emit_bc_load_const_tok(emit_t *emit, mp_token_kind_t tok) { MP_STATIC_ASSERT(MP_BC_LOAD_CONST_FALSE + (MP_TOKEN_KW_NONE - MP_TOKEN_KW_FALSE) == MP_BC_LOAD_CONST_NONE); MP_STATIC_ASSERT(MP_BC_LOAD_CONST_FALSE + (MP_TOKEN_KW_TRUE - MP_TOKEN_KW_FALSE) == MP_BC_LOAD_CONST_TRUE); if (tok == MP_TOKEN_ELLIPSIS) { emit_write_bytecode_byte_obj(emit, 1, MP_BC_LOAD_CONST_OBJ, MP_OBJ_FROM_PTR(&mp_const_ellipsis_obj)); } else { emit_write_bytecode_byte(emit, 1, MP_BC_LOAD_CONST_FALSE + (tok - MP_TOKEN_KW_FALSE)); } } void mp_emit_bc_load_const_small_int(emit_t *emit, mp_int_t arg) { if (-MP_BC_LOAD_CONST_SMALL_INT_MULTI_EXCESS <= arg && arg < MP_BC_LOAD_CONST_SMALL_INT_MULTI_NUM - MP_BC_LOAD_CONST_SMALL_INT_MULTI_EXCESS) { emit_write_bytecode_byte(emit, 1, MP_BC_LOAD_CONST_SMALL_INT_MULTI + MP_BC_LOAD_CONST_SMALL_INT_MULTI_EXCESS + arg); } else { emit_write_bytecode_byte_int(emit, 1, MP_BC_LOAD_CONST_SMALL_INT, arg); } } void mp_emit_bc_load_const_str(emit_t *emit, qstr qst) { emit_write_bytecode_byte_qstr(emit, 1, MP_BC_LOAD_CONST_STRING, qst); } void mp_emit_bc_load_const_obj(emit_t *emit, mp_obj_t obj) { emit_write_bytecode_byte_obj(emit, 1, MP_BC_LOAD_CONST_OBJ, obj); } void mp_emit_bc_load_null(emit_t *emit) { emit_write_bytecode_byte(emit, 1, MP_BC_LOAD_NULL); } void mp_emit_bc_load_local(emit_t *emit, qstr qst, mp_uint_t local_num, int kind) { MP_STATIC_ASSERT(MP_BC_LOAD_FAST_N + MP_EMIT_IDOP_LOCAL_FAST == MP_BC_LOAD_FAST_N); MP_STATIC_ASSERT(MP_BC_LOAD_FAST_N + MP_EMIT_IDOP_LOCAL_DEREF == MP_BC_LOAD_DEREF); (void)qst; if (kind == MP_EMIT_IDOP_LOCAL_FAST && local_num <= 15) { emit_write_bytecode_byte(emit, 1, MP_BC_LOAD_FAST_MULTI + local_num); } else { emit_write_bytecode_byte_uint(emit, 1, MP_BC_LOAD_FAST_N + kind, local_num); } } void mp_emit_bc_load_global(emit_t *emit, qstr qst, int kind) { MP_STATIC_ASSERT(MP_BC_LOAD_NAME + MP_EMIT_IDOP_GLOBAL_NAME == MP_BC_LOAD_NAME); MP_STATIC_ASSERT(MP_BC_LOAD_NAME + MP_EMIT_IDOP_GLOBAL_GLOBAL == MP_BC_LOAD_GLOBAL); (void)qst; emit_write_bytecode_byte_qstr(emit, 1, MP_BC_LOAD_NAME + kind, qst); } void mp_emit_bc_load_method(emit_t *emit, qstr qst, bool is_super) { int stack_adj = 1 - 2 * is_super; emit_write_bytecode_byte_qstr(emit, stack_adj, is_super ? MP_BC_LOAD_SUPER_METHOD : MP_BC_LOAD_METHOD, qst); } void mp_emit_bc_load_build_class(emit_t *emit) { emit_write_bytecode_byte(emit, 1, MP_BC_LOAD_BUILD_CLASS); } void mp_emit_bc_subscr(emit_t *emit, int kind) { if (kind == MP_EMIT_SUBSCR_LOAD) { emit_write_bytecode_byte(emit, -1, MP_BC_LOAD_SUBSCR); } else { if (kind == MP_EMIT_SUBSCR_DELETE) { mp_emit_bc_load_null(emit); mp_emit_bc_rot_three(emit); } emit_write_bytecode_byte(emit, -3, MP_BC_STORE_SUBSCR); } } void mp_emit_bc_attr(emit_t *emit, qstr qst, int kind) { if (kind == MP_EMIT_ATTR_LOAD) { emit_write_bytecode_byte_qstr(emit, 0, MP_BC_LOAD_ATTR, qst); } else { if (kind == MP_EMIT_ATTR_DELETE) { mp_emit_bc_load_null(emit); mp_emit_bc_rot_two(emit); } emit_write_bytecode_byte_qstr(emit, -2, MP_BC_STORE_ATTR, qst); } } void mp_emit_bc_store_local(emit_t *emit, qstr qst, mp_uint_t local_num, int kind) { MP_STATIC_ASSERT(MP_BC_STORE_FAST_N + MP_EMIT_IDOP_LOCAL_FAST == MP_BC_STORE_FAST_N); MP_STATIC_ASSERT(MP_BC_STORE_FAST_N + MP_EMIT_IDOP_LOCAL_DEREF == MP_BC_STORE_DEREF); (void)qst; if (kind == MP_EMIT_IDOP_LOCAL_FAST && local_num <= 15) { emit_write_bytecode_byte(emit, -1, MP_BC_STORE_FAST_MULTI + local_num); } else { emit_write_bytecode_byte_uint(emit, -1, MP_BC_STORE_FAST_N + kind, local_num); } } void mp_emit_bc_store_global(emit_t *emit, qstr qst, int kind) { MP_STATIC_ASSERT(MP_BC_STORE_NAME + MP_EMIT_IDOP_GLOBAL_NAME == MP_BC_STORE_NAME); MP_STATIC_ASSERT(MP_BC_STORE_NAME + MP_EMIT_IDOP_GLOBAL_GLOBAL == MP_BC_STORE_GLOBAL); emit_write_bytecode_byte_qstr(emit, -1, MP_BC_STORE_NAME + kind, qst); } void mp_emit_bc_delete_local(emit_t *emit, qstr qst, mp_uint_t local_num, int kind) { MP_STATIC_ASSERT(MP_BC_DELETE_FAST + MP_EMIT_IDOP_LOCAL_FAST == MP_BC_DELETE_FAST); MP_STATIC_ASSERT(MP_BC_DELETE_FAST + MP_EMIT_IDOP_LOCAL_DEREF == MP_BC_DELETE_DEREF); (void)qst; emit_write_bytecode_byte_uint(emit, 0, MP_BC_DELETE_FAST + kind, local_num); } void mp_emit_bc_delete_global(emit_t *emit, qstr qst, int kind) { MP_STATIC_ASSERT(MP_BC_DELETE_NAME + MP_EMIT_IDOP_GLOBAL_NAME == MP_BC_DELETE_NAME); MP_STATIC_ASSERT(MP_BC_DELETE_NAME + MP_EMIT_IDOP_GLOBAL_GLOBAL == MP_BC_DELETE_GLOBAL); emit_write_bytecode_byte_qstr(emit, 0, MP_BC_DELETE_NAME + kind, qst); } void mp_emit_bc_dup_top(emit_t *emit) { emit_write_bytecode_byte(emit, 1, MP_BC_DUP_TOP); } void mp_emit_bc_dup_top_two(emit_t *emit) { emit_write_bytecode_byte(emit, 2, MP_BC_DUP_TOP_TWO); } void mp_emit_bc_pop_top(emit_t *emit) { emit_write_bytecode_byte(emit, -1, MP_BC_POP_TOP); } void mp_emit_bc_rot_two(emit_t *emit) { emit_write_bytecode_byte(emit, 0, MP_BC_ROT_TWO); } void mp_emit_bc_rot_three(emit_t *emit) { emit_write_bytecode_byte(emit, 0, MP_BC_ROT_THREE); } void mp_emit_bc_jump(emit_t *emit, mp_uint_t label) { emit_write_bytecode_byte_signed_label(emit, 0, MP_BC_JUMP, label); } void mp_emit_bc_pop_jump_if(emit_t *emit, bool cond, mp_uint_t label) { if (cond) { emit_write_bytecode_byte_signed_label(emit, -1, MP_BC_POP_JUMP_IF_TRUE, label); } else { emit_write_bytecode_byte_signed_label(emit, -1, MP_BC_POP_JUMP_IF_FALSE, label); } } void mp_emit_bc_jump_if_or_pop(emit_t *emit, bool cond, mp_uint_t label) { if (cond) { emit_write_bytecode_byte_signed_label(emit, -1, MP_BC_JUMP_IF_TRUE_OR_POP, label); } else { emit_write_bytecode_byte_signed_label(emit, -1, MP_BC_JUMP_IF_FALSE_OR_POP, label); } } void mp_emit_bc_unwind_jump(emit_t *emit, mp_uint_t label, mp_uint_t except_depth) { if (except_depth == 0) { if (label & MP_EMIT_BREAK_FROM_FOR) { // need to pop the iterator if we are breaking out of a for loop emit_write_bytecode_raw_byte(emit, MP_BC_POP_TOP); // also pop the iter_buf for (size_t i = 0; i < MP_OBJ_ITER_BUF_NSLOTS - 1; ++i) { emit_write_bytecode_raw_byte(emit, MP_BC_POP_TOP); } } emit_write_bytecode_byte_signed_label(emit, 0, MP_BC_JUMP, label & ~MP_EMIT_BREAK_FROM_FOR); } else { emit_write_bytecode_byte_signed_label(emit, 0, MP_BC_UNWIND_JUMP, label & ~MP_EMIT_BREAK_FROM_FOR); emit_write_bytecode_raw_byte(emit, ((label & MP_EMIT_BREAK_FROM_FOR) ? 0x80 : 0) | except_depth); } } void mp_emit_bc_setup_block(emit_t *emit, mp_uint_t label, int kind) { MP_STATIC_ASSERT(MP_BC_SETUP_WITH + MP_EMIT_SETUP_BLOCK_WITH == MP_BC_SETUP_WITH); MP_STATIC_ASSERT(MP_BC_SETUP_WITH + MP_EMIT_SETUP_BLOCK_EXCEPT == MP_BC_SETUP_EXCEPT); MP_STATIC_ASSERT(MP_BC_SETUP_WITH + MP_EMIT_SETUP_BLOCK_FINALLY == MP_BC_SETUP_FINALLY); // The SETUP_WITH opcode pops ctx_mgr from the top of the stack // and then pushes 3 entries: __exit__, ctx_mgr, as_value. int stack_adj = kind == MP_EMIT_SETUP_BLOCK_WITH ? 2 : 0; emit_write_bytecode_byte_unsigned_label(emit, stack_adj, MP_BC_SETUP_WITH + kind, label); } void mp_emit_bc_with_cleanup(emit_t *emit, mp_uint_t label) { mp_emit_bc_load_const_tok(emit, MP_TOKEN_KW_NONE); mp_emit_bc_label_assign(emit, label); // The +2 is to ensure we have enough stack space to call the __exit__ method emit_write_bytecode_byte(emit, 2, MP_BC_WITH_CLEANUP); // Cancel the +2 above, plus the +2 from mp_emit_bc_setup_block(MP_EMIT_SETUP_BLOCK_WITH) mp_emit_bc_adjust_stack_size(emit, -4); } void mp_emit_bc_end_finally(emit_t *emit) { emit_write_bytecode_byte(emit, -1, MP_BC_END_FINALLY); } void mp_emit_bc_get_iter(emit_t *emit, bool use_stack) { int stack_adj = use_stack ? MP_OBJ_ITER_BUF_NSLOTS - 1 : 0; emit_write_bytecode_byte(emit, stack_adj, use_stack ? MP_BC_GET_ITER_STACK : MP_BC_GET_ITER); } void mp_emit_bc_for_iter(emit_t *emit, mp_uint_t label) { emit_write_bytecode_byte_unsigned_label(emit, 1, MP_BC_FOR_ITER, label); } void mp_emit_bc_for_iter_end(emit_t *emit) { mp_emit_bc_adjust_stack_size(emit, -MP_OBJ_ITER_BUF_NSLOTS); } void mp_emit_bc_pop_except_jump(emit_t *emit, mp_uint_t label, bool within_exc_handler) { (void)within_exc_handler; emit_write_bytecode_byte_unsigned_label(emit, 0, MP_BC_POP_EXCEPT_JUMP, label); } void mp_emit_bc_unary_op(emit_t *emit, mp_unary_op_t op) { emit_write_bytecode_byte(emit, 0, MP_BC_UNARY_OP_MULTI + op); } void mp_emit_bc_binary_op(emit_t *emit, mp_binary_op_t op) { bool invert = false; if (op == MP_BINARY_OP_NOT_IN) { invert = true; op = MP_BINARY_OP_IN; } else if (op == MP_BINARY_OP_IS_NOT) { invert = true; op = MP_BINARY_OP_IS; } emit_write_bytecode_byte(emit, -1, MP_BC_BINARY_OP_MULTI + op); if (invert) { emit_write_bytecode_byte(emit, 0, MP_BC_UNARY_OP_MULTI + MP_UNARY_OP_NOT); } } void mp_emit_bc_build(emit_t *emit, mp_uint_t n_args, int kind) { MP_STATIC_ASSERT(MP_BC_BUILD_TUPLE + MP_EMIT_BUILD_TUPLE == MP_BC_BUILD_TUPLE); MP_STATIC_ASSERT(MP_BC_BUILD_TUPLE + MP_EMIT_BUILD_LIST == MP_BC_BUILD_LIST); MP_STATIC_ASSERT(MP_BC_BUILD_TUPLE + MP_EMIT_BUILD_MAP == MP_BC_BUILD_MAP); MP_STATIC_ASSERT(MP_BC_BUILD_TUPLE + MP_EMIT_BUILD_SET == MP_BC_BUILD_SET); MP_STATIC_ASSERT(MP_BC_BUILD_TUPLE + MP_EMIT_BUILD_SLICE == MP_BC_BUILD_SLICE); int stack_adj = kind == MP_EMIT_BUILD_MAP ? 1 : 1 - n_args; emit_write_bytecode_byte_uint(emit, stack_adj, MP_BC_BUILD_TUPLE + kind, n_args); } void mp_emit_bc_store_map(emit_t *emit) { emit_write_bytecode_byte(emit, -2, MP_BC_STORE_MAP); } void mp_emit_bc_store_comp(emit_t *emit, scope_kind_t kind, mp_uint_t collection_stack_index) { int t; int n; if (kind == SCOPE_LIST_COMP) { n = 0; t = 0; } else if (!MICROPY_PY_BUILTINS_SET || kind == SCOPE_DICT_COMP) { n = 1; t = 1; } else if (MICROPY_PY_BUILTINS_SET) { n = 0; t = 2; } // the lower 2 bits of the opcode argument indicate the collection type emit_write_bytecode_byte_uint(emit, -1 - n, MP_BC_STORE_COMP, ((collection_stack_index + n) << 2) | t); } void mp_emit_bc_unpack_sequence(emit_t *emit, mp_uint_t n_args) { emit_write_bytecode_byte_uint(emit, -1 + n_args, MP_BC_UNPACK_SEQUENCE, n_args); } void mp_emit_bc_unpack_ex(emit_t *emit, mp_uint_t n_left, mp_uint_t n_right) { emit_write_bytecode_byte_uint(emit, -1 + n_left + n_right + 1, MP_BC_UNPACK_EX, n_left | (n_right << 8)); } void mp_emit_bc_make_function(emit_t *emit, scope_t *scope, mp_uint_t n_pos_defaults, mp_uint_t n_kw_defaults) { if (n_pos_defaults == 0 && n_kw_defaults == 0) { emit_write_bytecode_byte_raw_code(emit, 1, MP_BC_MAKE_FUNCTION, scope->raw_code); } else { emit_write_bytecode_byte_raw_code(emit, -1, MP_BC_MAKE_FUNCTION_DEFARGS, scope->raw_code); } } void mp_emit_bc_make_closure(emit_t *emit, scope_t *scope, mp_uint_t n_closed_over, mp_uint_t n_pos_defaults, mp_uint_t n_kw_defaults) { if (n_pos_defaults == 0 && n_kw_defaults == 0) { int stack_adj = -n_closed_over + 1; emit_write_bytecode_byte_raw_code(emit, stack_adj, MP_BC_MAKE_CLOSURE, scope->raw_code); emit_write_bytecode_raw_byte(emit, n_closed_over); } else { assert(n_closed_over <= 255); int stack_adj = -2 - (mp_int_t)n_closed_over + 1; emit_write_bytecode_byte_raw_code(emit, stack_adj, MP_BC_MAKE_CLOSURE_DEFARGS, scope->raw_code); emit_write_bytecode_raw_byte(emit, n_closed_over); } } STATIC void emit_bc_call_function_method_helper(emit_t *emit, int stack_adj, mp_uint_t bytecode_base, mp_uint_t n_positional, mp_uint_t n_keyword, mp_uint_t star_flags) { if (star_flags) { stack_adj -= (int)n_positional + 2 * (int)n_keyword + 2; emit_write_bytecode_byte_uint(emit, stack_adj, bytecode_base + 1, (n_keyword << 8) | n_positional); // TODO make it 2 separate uints? } else { stack_adj -= (int)n_positional + 2 * (int)n_keyword; emit_write_bytecode_byte_uint(emit, stack_adj, bytecode_base, (n_keyword << 8) | n_positional); // TODO make it 2 separate uints? } } void mp_emit_bc_call_function(emit_t *emit, mp_uint_t n_positional, mp_uint_t n_keyword, mp_uint_t star_flags) { emit_bc_call_function_method_helper(emit, 0, MP_BC_CALL_FUNCTION, n_positional, n_keyword, star_flags); } void mp_emit_bc_call_method(emit_t *emit, mp_uint_t n_positional, mp_uint_t n_keyword, mp_uint_t star_flags) { emit_bc_call_function_method_helper(emit, -1, MP_BC_CALL_METHOD, n_positional, n_keyword, star_flags); } void mp_emit_bc_return_value(emit_t *emit) { emit_write_bytecode_byte(emit, -1, MP_BC_RETURN_VALUE); emit->last_emit_was_return_value = true; } void mp_emit_bc_raise_varargs(emit_t *emit, mp_uint_t n_args) { MP_STATIC_ASSERT(MP_BC_RAISE_LAST + 1 == MP_BC_RAISE_OBJ); MP_STATIC_ASSERT(MP_BC_RAISE_LAST + 2 == MP_BC_RAISE_FROM); assert(n_args <= 2); emit_write_bytecode_byte(emit, -n_args, MP_BC_RAISE_LAST + n_args); } void mp_emit_bc_yield(emit_t *emit, int kind) { MP_STATIC_ASSERT(MP_BC_YIELD_VALUE + 1 == MP_BC_YIELD_FROM); emit_write_bytecode_byte(emit, -kind, MP_BC_YIELD_VALUE + kind); emit->scope->scope_flags |= MP_SCOPE_FLAG_GENERATOR; } void mp_emit_bc_start_except_handler(emit_t *emit) { mp_emit_bc_adjust_stack_size(emit, 4); // stack adjust for the exception instance, +3 for possible UNWIND_JUMP state } void mp_emit_bc_end_except_handler(emit_t *emit) { mp_emit_bc_adjust_stack_size(emit, -3); // stack adjust } #if MICROPY_EMIT_NATIVE const emit_method_table_t emit_bc_method_table = { #if MICROPY_DYNAMIC_COMPILER NULL, NULL, #endif mp_emit_bc_start_pass, mp_emit_bc_end_pass, mp_emit_bc_last_emit_was_return_value, mp_emit_bc_adjust_stack_size, mp_emit_bc_set_source_line, { mp_emit_bc_load_local, mp_emit_bc_load_global, }, { mp_emit_bc_store_local, mp_emit_bc_store_global, }, { mp_emit_bc_delete_local, mp_emit_bc_delete_global, }, mp_emit_bc_label_assign, mp_emit_bc_import, mp_emit_bc_load_const_tok, mp_emit_bc_load_const_small_int, mp_emit_bc_load_const_str, mp_emit_bc_load_const_obj, mp_emit_bc_load_null, mp_emit_bc_load_method, mp_emit_bc_load_build_class, mp_emit_bc_subscr, mp_emit_bc_attr, mp_emit_bc_dup_top, mp_emit_bc_dup_top_two, mp_emit_bc_pop_top, mp_emit_bc_rot_two, mp_emit_bc_rot_three, mp_emit_bc_jump, mp_emit_bc_pop_jump_if, mp_emit_bc_jump_if_or_pop, mp_emit_bc_unwind_jump, mp_emit_bc_setup_block, mp_emit_bc_with_cleanup, mp_emit_bc_end_finally, mp_emit_bc_get_iter, mp_emit_bc_for_iter, mp_emit_bc_for_iter_end, mp_emit_bc_pop_except_jump, mp_emit_bc_unary_op, mp_emit_bc_binary_op, mp_emit_bc_build, mp_emit_bc_store_map, mp_emit_bc_store_comp, mp_emit_bc_unpack_sequence, mp_emit_bc_unpack_ex, mp_emit_bc_make_function, mp_emit_bc_make_closure, mp_emit_bc_call_function, mp_emit_bc_call_method, mp_emit_bc_return_value, mp_emit_bc_raise_varargs, mp_emit_bc_yield, mp_emit_bc_start_except_handler, mp_emit_bc_end_except_handler, }; #else const mp_emit_method_table_id_ops_t mp_emit_bc_method_table_load_id_ops = { mp_emit_bc_load_local, mp_emit_bc_load_global, }; const mp_emit_method_table_id_ops_t mp_emit_bc_method_table_store_id_ops = { mp_emit_bc_store_local, mp_emit_bc_store_global, }; const mp_emit_method_table_id_ops_t mp_emit_bc_method_table_delete_id_ops = { mp_emit_bc_delete_local, mp_emit_bc_delete_global, }; #endif #endif // MICROPY_ENABLE_COMPILER