/* * This file is part of the MicroPython project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2014 Damien P. George * Copyright (c) 2014 Paul Sokolovsky * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include #include #include #include "py/runtime.h" #include "py/bc0.h" #include "py/bc.h" #if MICROPY_DEBUG_VERBOSE // print debugging info #define DEBUG_PRINT (1) #else // don't print debugging info #define DEBUG_PRINT (0) #define DEBUG_printf(...) (void)0 #endif #if !MICROPY_PERSISTENT_CODE mp_uint_t mp_decode_uint(const byte **ptr) { mp_uint_t unum = 0; byte val; const byte *p = *ptr; do { val = *p++; unum = (unum << 7) | (val & 0x7f); } while ((val & 0x80) != 0); *ptr = p; return unum; } // This function is used to help reduce stack usage at the caller, for the case when // the caller doesn't need to increase the ptr argument. If ptr is a local variable // and the caller uses mp_decode_uint(&ptr) instead of this function, then the compiler // must allocate a slot on the stack for ptr, and this slot cannot be reused for // anything else in the function because the pointer may have been stored in a global // and reused later in the function. mp_uint_t mp_decode_uint_value(const byte *ptr) { return mp_decode_uint(&ptr); } // This function is used to help reduce stack usage at the caller, for the case when // the caller doesn't need the actual value and just wants to skip over it. const byte *mp_decode_uint_skip(const byte *ptr) { while ((*ptr++) & 0x80) { } return ptr; } #endif STATIC NORETURN void fun_pos_args_mismatch(mp_obj_fun_bc_t *f, size_t expected, size_t given) { #if MICROPY_ERROR_REPORTING <= MICROPY_ERROR_REPORTING_TERSE // generic message, used also for other argument issues (void)f; (void)expected; (void)given; mp_arg_error_terse_mismatch(); #elif MICROPY_ERROR_REPORTING == MICROPY_ERROR_REPORTING_NORMAL (void)f; mp_raise_msg_varg(&mp_type_TypeError, MP_ERROR_TEXT("function takes %d positional arguments but %d were given"), expected, given); #elif MICROPY_ERROR_REPORTING == MICROPY_ERROR_REPORTING_DETAILED mp_raise_msg_varg(&mp_type_TypeError, MP_ERROR_TEXT("%q() takes %d positional arguments but %d were given"), mp_obj_fun_get_name(MP_OBJ_FROM_PTR(f)), expected, given); #endif } #if DEBUG_PRINT STATIC void dump_args(const mp_obj_t *a, size_t sz) { DEBUG_printf("%p: ", a); for (size_t i = 0; i < sz; i++) { DEBUG_printf("%p ", a[i]); } DEBUG_printf("\n"); } #else #define dump_args(...) (void)0 #endif // On entry code_state should be allocated somewhere (stack/heap) and // contain the following valid entries: // - code_state->fun_bc should contain a pointer to the function object // - code_state->ip should contain the offset in bytes from the pointer // code_state->fun_bc->bytecode to the entry n_state (0 for bytecode, non-zero for native) void mp_setup_code_state(mp_code_state_t *code_state, size_t n_args, size_t n_kw, const mp_obj_t *args) { // This function is pretty complicated. It's main aim is to be efficient in speed and RAM // usage for the common case of positional only args. // get the function object that we want to set up (could be bytecode or native code) mp_obj_fun_bc_t *self = code_state->fun_bc; // ip comes in as an offset into bytecode, so turn it into a true pointer code_state->ip = self->bytecode + (size_t)code_state->ip; #if MICROPY_STACKLESS code_state->prev = NULL; #endif #if MICROPY_PY_SYS_SETTRACE code_state->prev_state = NULL; code_state->frame = NULL; #endif // Get cached n_state (rather than decode it again) size_t n_state = code_state->n_state; // Decode prelude size_t n_state_unused, n_exc_stack_unused, scope_flags, n_pos_args, n_kwonly_args, n_def_pos_args; MP_BC_PRELUDE_SIG_DECODE_INTO(code_state->ip, n_state_unused, n_exc_stack_unused, scope_flags, n_pos_args, n_kwonly_args, n_def_pos_args); (void)n_state_unused; (void)n_exc_stack_unused; code_state->sp = &code_state->state[0] - 1; code_state->exc_sp_idx = 0; // zero out the local stack to begin with memset(code_state->state, 0, n_state * sizeof(*code_state->state)); const mp_obj_t *kwargs = args + n_args; // var_pos_kw_args points to the stack where the var-args tuple, and var-kw dict, should go (if they are needed) mp_obj_t *var_pos_kw_args = &code_state->state[n_state - 1 - n_pos_args - n_kwonly_args]; // check positional arguments if (n_args > n_pos_args) { // given more than enough arguments if ((scope_flags & MP_SCOPE_FLAG_VARARGS) == 0) { fun_pos_args_mismatch(self, n_pos_args, n_args); } // put extra arguments in varargs tuple *var_pos_kw_args-- = mp_obj_new_tuple(n_args - n_pos_args, args + n_pos_args); n_args = n_pos_args; } else { if ((scope_flags & MP_SCOPE_FLAG_VARARGS) != 0) { DEBUG_printf("passing empty tuple as *args\n"); *var_pos_kw_args-- = mp_const_empty_tuple; } // Apply processing and check below only if we don't have kwargs, // otherwise, kw handling code below has own extensive checks. if (n_kw == 0 && (scope_flags & MP_SCOPE_FLAG_DEFKWARGS) == 0) { if (n_args >= (size_t)(n_pos_args - n_def_pos_args)) { // given enough arguments, but may need to use some default arguments for (size_t i = n_args; i < n_pos_args; i++) { code_state->state[n_state - 1 - i] = self->extra_args[i - (n_pos_args - n_def_pos_args)]; } } else { fun_pos_args_mismatch(self, n_pos_args - n_def_pos_args, n_args); } } } // copy positional args into state for (size_t i = 0; i < n_args; i++) { code_state->state[n_state - 1 - i] = args[i]; } // check keyword arguments if (n_kw != 0 || (scope_flags & MP_SCOPE_FLAG_DEFKWARGS) != 0) { DEBUG_printf("Initial args: "); dump_args(code_state->state + n_state - n_pos_args - n_kwonly_args, n_pos_args + n_kwonly_args); mp_obj_t dict = MP_OBJ_NULL; if ((scope_flags & MP_SCOPE_FLAG_VARKEYWORDS) != 0) { dict = mp_obj_new_dict(n_kw); // TODO: better go conservative with 0? *var_pos_kw_args = dict; } // get pointer to arg_names array const mp_obj_t *arg_names = (const mp_obj_t *)self->const_table; for (size_t i = 0; i < n_kw; i++) { // the keys in kwargs are expected to be qstr objects mp_obj_t wanted_arg_name = kwargs[2 * i]; for (size_t j = 0; j < n_pos_args + n_kwonly_args; j++) { if (wanted_arg_name == arg_names[j]) { if (code_state->state[n_state - 1 - j] != MP_OBJ_NULL) { mp_raise_msg_varg(&mp_type_TypeError, MP_ERROR_TEXT("function got multiple values for argument '%q'"), MP_OBJ_QSTR_VALUE(wanted_arg_name)); } code_state->state[n_state - 1 - j] = kwargs[2 * i + 1]; goto continue2; } } // Didn't find name match with positional args if ((scope_flags & MP_SCOPE_FLAG_VARKEYWORDS) == 0) { #if MICROPY_ERROR_REPORTING <= MICROPY_ERROR_REPORTING_TERSE mp_raise_TypeError(MP_ERROR_TEXT("unexpected keyword argument")); #else mp_raise_msg_varg(&mp_type_TypeError, MP_ERROR_TEXT("unexpected keyword argument '%q'"), MP_OBJ_QSTR_VALUE(wanted_arg_name)); #endif } mp_obj_dict_store(dict, kwargs[2 * i], kwargs[2 * i + 1]); continue2:; } DEBUG_printf("Args with kws flattened: "); dump_args(code_state->state + n_state - n_pos_args - n_kwonly_args, n_pos_args + n_kwonly_args); // fill in defaults for positional args mp_obj_t *d = &code_state->state[n_state - n_pos_args]; mp_obj_t *s = &self->extra_args[n_def_pos_args - 1]; for (size_t i = n_def_pos_args; i > 0; i--, d++, s--) { if (*d == MP_OBJ_NULL) { *d = *s; } } DEBUG_printf("Args after filling default positional: "); dump_args(code_state->state + n_state - n_pos_args - n_kwonly_args, n_pos_args + n_kwonly_args); // Check that all mandatory positional args are specified while (d < &code_state->state[n_state]) { if (*d++ == MP_OBJ_NULL) { mp_raise_msg_varg(&mp_type_TypeError, MP_ERROR_TEXT("function missing required positional argument #%d"), &code_state->state[n_state] - d); } } // Check that all mandatory keyword args are specified // Fill in default kw args if we have them for (size_t i = 0; i < n_kwonly_args; i++) { if (code_state->state[n_state - 1 - n_pos_args - i] == MP_OBJ_NULL) { mp_map_elem_t *elem = NULL; if ((scope_flags & MP_SCOPE_FLAG_DEFKWARGS) != 0) { elem = mp_map_lookup(&((mp_obj_dict_t *)MP_OBJ_TO_PTR(self->extra_args[n_def_pos_args]))->map, arg_names[n_pos_args + i], MP_MAP_LOOKUP); } if (elem != NULL) { code_state->state[n_state - 1 - n_pos_args - i] = elem->value; } else { mp_raise_msg_varg(&mp_type_TypeError, MP_ERROR_TEXT("function missing required keyword argument '%q'"), MP_OBJ_QSTR_VALUE(arg_names[n_pos_args + i])); } } } } else { // no keyword arguments given if (n_kwonly_args != 0) { mp_raise_TypeError(MP_ERROR_TEXT("function missing keyword-only argument")); } if ((scope_flags & MP_SCOPE_FLAG_VARKEYWORDS) != 0) { *var_pos_kw_args = mp_obj_new_dict(0); } } // read the size part of the prelude const byte *ip = code_state->ip; MP_BC_PRELUDE_SIZE_DECODE(ip); // jump over code info (source file and line-number mapping) ip += n_info; // bytecode prelude: initialise closed over variables for (; n_cell; --n_cell) { size_t local_num = *ip++; code_state->state[n_state - 1 - local_num] = mp_obj_new_cell(code_state->state[n_state - 1 - local_num]); } #if !MICROPY_PERSISTENT_CODE // so bytecode is aligned ip = MP_ALIGN(ip, sizeof(mp_uint_t)); #endif // now that we skipped over the prelude, set the ip for the VM code_state->ip = ip; DEBUG_printf("Calling: n_pos_args=%d, n_kwonly_args=%d\n", n_pos_args, n_kwonly_args); dump_args(code_state->state + n_state - n_pos_args - n_kwonly_args, n_pos_args + n_kwonly_args); dump_args(code_state->state, n_state); } #if MICROPY_PERSISTENT_CODE_LOAD || MICROPY_PERSISTENT_CODE_SAVE // The following table encodes the number of bytes that a specific opcode // takes up. Some opcodes have an extra byte, defined by MP_BC_MASK_EXTRA_BYTE. uint mp_opcode_format(const byte *ip, size_t *opcode_size, bool count_var_uint) { uint f = MP_BC_FORMAT(*ip); const byte *ip_start = ip; if (f == MP_BC_FORMAT_QSTR) { ip += 3; } else { int extra_byte = (*ip & MP_BC_MASK_EXTRA_BYTE) == 0; ip += 1; if (f == MP_BC_FORMAT_VAR_UINT) { if (count_var_uint) { while ((*ip++ & 0x80) != 0) { } } } else if (f == MP_BC_FORMAT_OFFSET) { ip += 2; } ip += extra_byte; } *opcode_size = ip - ip_start; return f; } #endif // MICROPY_PERSISTENT_CODE_LOAD || MICROPY_PERSISTENT_CODE_SAVE