/* * This file is part of the MicroPython project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2016 Damien P. George * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include #include #include #include "driver/uart.h" #include "freertos/FreeRTOS.h" #include "py/runtime.h" #include "py/stream.h" #include "py/mperrno.h" #include "modmachine.h" #include "uart.h" #if ESP_IDF_VERSION < ESP_IDF_VERSION_VAL(4, 1, 0) #define UART_INV_TX UART_INVERSE_TXD #define UART_INV_RX UART_INVERSE_RXD #define UART_INV_RTS UART_INVERSE_RTS #define UART_INV_CTS UART_INVERSE_CTS #else #define UART_INV_TX UART_SIGNAL_TXD_INV #define UART_INV_RX UART_SIGNAL_RXD_INV #define UART_INV_RTS UART_SIGNAL_RTS_INV #define UART_INV_CTS UART_SIGNAL_CTS_INV #endif #define UART_INV_MASK (UART_INV_TX | UART_INV_RX | UART_INV_RTS | UART_INV_CTS) typedef struct _machine_uart_obj_t { mp_obj_base_t base; uart_port_t uart_num; uart_hw_flowcontrol_t flowcontrol; uint8_t bits; uint8_t parity; uint8_t stop; int8_t tx; int8_t rx; int8_t rts; int8_t cts; uint16_t txbuf; uint16_t rxbuf; uint16_t timeout; // timeout waiting for first char (in ms) uint16_t timeout_char; // timeout waiting between chars (in ms) uint32_t invert; // lines to invert } machine_uart_obj_t; STATIC const char *_parity_name[] = {"None", "1", "0"}; /******************************************************************************/ // MicroPython bindings for UART STATIC void machine_uart_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) { machine_uart_obj_t *self = MP_OBJ_TO_PTR(self_in); uint32_t baudrate; uart_get_baudrate(self->uart_num, &baudrate); mp_printf(print, "UART(%u, baudrate=%u, bits=%u, parity=%s, stop=%u, tx=%d, rx=%d, rts=%d, cts=%d, txbuf=%u, rxbuf=%u, timeout=%u, timeout_char=%u", self->uart_num, baudrate, self->bits, _parity_name[self->parity], self->stop, self->tx, self->rx, self->rts, self->cts, self->txbuf, self->rxbuf, self->timeout, self->timeout_char); if (self->invert) { mp_printf(print, ", invert="); uint32_t invert_mask = self->invert; if (invert_mask & UART_INV_TX) { mp_printf(print, "INV_TX"); invert_mask &= ~UART_INV_TX; if (invert_mask) { mp_printf(print, "|"); } } if (invert_mask & UART_INV_RX) { mp_printf(print, "INV_RX"); invert_mask &= ~UART_INV_RX; if (invert_mask) { mp_printf(print, "|"); } } if (invert_mask & UART_INV_RTS) { mp_printf(print, "INV_RTS"); invert_mask &= ~UART_INV_RTS; if (invert_mask) { mp_printf(print, "|"); } } if (invert_mask & UART_INV_CTS) { mp_printf(print, "INV_CTS"); } } if (self->flowcontrol) { mp_printf(print, ", flow="); uint32_t flow_mask = self->flowcontrol; if (flow_mask & UART_HW_FLOWCTRL_RTS) { mp_printf(print, "RTS"); flow_mask &= ~UART_HW_FLOWCTRL_RTS; if (flow_mask) { mp_printf(print, "|"); } } if (flow_mask & UART_HW_FLOWCTRL_CTS) { mp_printf(print, "CTS"); } } mp_printf(print, ")"); } STATIC void machine_uart_init_helper(machine_uart_obj_t *self, size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) { enum { ARG_baudrate, ARG_bits, ARG_parity, ARG_stop, ARG_tx, ARG_rx, ARG_rts, ARG_cts, ARG_txbuf, ARG_rxbuf, ARG_timeout, ARG_timeout_char, ARG_invert, ARG_flow }; static const mp_arg_t allowed_args[] = { { MP_QSTR_baudrate, MP_ARG_INT, {.u_int = 0} }, { MP_QSTR_bits, MP_ARG_INT, {.u_int = 0} }, { MP_QSTR_parity, MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} }, { MP_QSTR_stop, MP_ARG_INT, {.u_int = 0} }, { MP_QSTR_tx, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = UART_PIN_NO_CHANGE} }, { MP_QSTR_rx, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = UART_PIN_NO_CHANGE} }, { MP_QSTR_rts, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = UART_PIN_NO_CHANGE} }, { MP_QSTR_cts, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = UART_PIN_NO_CHANGE} }, { MP_QSTR_txbuf, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = -1} }, { MP_QSTR_rxbuf, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = -1} }, { MP_QSTR_timeout, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = -1} }, { MP_QSTR_timeout_char, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = -1} }, { MP_QSTR_invert, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = -1} }, { MP_QSTR_flow, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = -1} }, }; mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)]; mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args); // wait for all data to be transmitted before changing settings uart_wait_tx_done(self->uart_num, pdMS_TO_TICKS(1000)); if (args[ARG_txbuf].u_int >= 0 || args[ARG_rxbuf].u_int >= 0) { // must reinitialise driver to change the tx/rx buffer size if (self->uart_num == MICROPY_HW_UART_REPL) { mp_raise_ValueError(MP_ERROR_TEXT("UART buffer size is fixed")); } if (args[ARG_txbuf].u_int >= 0) { self->txbuf = args[ARG_txbuf].u_int; } if (args[ARG_rxbuf].u_int >= 0) { self->rxbuf = args[ARG_rxbuf].u_int; } uart_config_t uartcfg = { .flow_ctrl = UART_HW_FLOWCTRL_DISABLE, .rx_flow_ctrl_thresh = 0 }; uint32_t baudrate; uart_get_baudrate(self->uart_num, &baudrate); uartcfg.baud_rate = baudrate; uart_get_word_length(self->uart_num, &uartcfg.data_bits); uart_get_parity(self->uart_num, &uartcfg.parity); uart_get_stop_bits(self->uart_num, &uartcfg.stop_bits); uart_driver_delete(self->uart_num); uart_param_config(self->uart_num, &uartcfg); uart_driver_install(self->uart_num, self->rxbuf, self->txbuf, 0, NULL, 0); } // set baudrate uint32_t baudrate = 115200; if (args[ARG_baudrate].u_int > 0) { uart_set_baudrate(self->uart_num, args[ARG_baudrate].u_int); } uart_get_baudrate(self->uart_num, &baudrate); uart_set_pin(self->uart_num, args[ARG_tx].u_int, args[ARG_rx].u_int, args[ARG_rts].u_int, args[ARG_cts].u_int); if (args[ARG_tx].u_int != UART_PIN_NO_CHANGE) { self->tx = args[ARG_tx].u_int; } if (args[ARG_rx].u_int != UART_PIN_NO_CHANGE) { self->rx = args[ARG_rx].u_int; } if (args[ARG_rts].u_int != UART_PIN_NO_CHANGE) { self->rts = args[ARG_rts].u_int; } if (args[ARG_cts].u_int != UART_PIN_NO_CHANGE) { self->cts = args[ARG_cts].u_int; } // set data bits switch (args[ARG_bits].u_int) { case 0: break; case 5: uart_set_word_length(self->uart_num, UART_DATA_5_BITS); self->bits = 5; break; case 6: uart_set_word_length(self->uart_num, UART_DATA_6_BITS); self->bits = 6; break; case 7: uart_set_word_length(self->uart_num, UART_DATA_7_BITS); self->bits = 7; break; case 8: uart_set_word_length(self->uart_num, UART_DATA_8_BITS); self->bits = 8; break; default: mp_raise_ValueError(MP_ERROR_TEXT("invalid data bits")); break; } // set parity if (args[ARG_parity].u_obj != MP_OBJ_NULL) { if (args[ARG_parity].u_obj == mp_const_none) { uart_set_parity(self->uart_num, UART_PARITY_DISABLE); self->parity = 0; } else { mp_int_t parity = mp_obj_get_int(args[ARG_parity].u_obj); if (parity & 1) { uart_set_parity(self->uart_num, UART_PARITY_ODD); self->parity = 1; } else { uart_set_parity(self->uart_num, UART_PARITY_EVEN); self->parity = 2; } } } // set stop bits switch (args[ARG_stop].u_int) { // FIXME: ESP32 also supports 1.5 stop bits case 0: break; case 1: uart_set_stop_bits(self->uart_num, UART_STOP_BITS_1); self->stop = 1; break; case 2: uart_set_stop_bits(self->uart_num, UART_STOP_BITS_2); self->stop = 2; break; default: mp_raise_ValueError(MP_ERROR_TEXT("invalid stop bits")); break; } // set timeout if (args[ARG_timeout].u_int != -1) { self->timeout = args[ARG_timeout].u_int; } // set timeout_char // make sure it is at least as long as a whole character (12 bits here) if (args[ARG_timeout_char].u_int != -1) { self->timeout_char = args[ARG_timeout_char].u_int; uint32_t char_time_ms = 12000 / baudrate + 1; uint32_t rx_timeout = self->timeout_char / char_time_ms; if (rx_timeout < 1) { #if ESP_IDF_VERSION >= ESP_IDF_VERSION_VAL(4, 1, 0) uart_set_rx_full_threshold(self->uart_num, 1); #endif uart_set_rx_timeout(self->uart_num, 1); } else { uart_set_rx_timeout(self->uart_num, rx_timeout); } } // set line inversion if (args[ARG_invert].u_int != -1) { if (args[ARG_invert].u_int & ~UART_INV_MASK) { mp_raise_ValueError(MP_ERROR_TEXT("invalid inversion mask")); } self->invert = args[ARG_invert].u_int; } uart_set_line_inverse(self->uart_num, self->invert); // set hardware flow control if (args[ARG_flow].u_int != -1) { if (args[ARG_flow].u_int & ~UART_HW_FLOWCTRL_CTS_RTS) { mp_raise_ValueError(MP_ERROR_TEXT("invalid flow control mask")); } self->flowcontrol = args[ARG_flow].u_int; } uart_set_hw_flow_ctrl(self->uart_num, self->flowcontrol, UART_FIFO_LEN - UART_FIFO_LEN / 4); } STATIC mp_obj_t machine_uart_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *args) { mp_arg_check_num(n_args, n_kw, 1, MP_OBJ_FUN_ARGS_MAX, true); // get uart id mp_int_t uart_num = mp_obj_get_int(args[0]); if (uart_num < 0 || uart_num >= UART_NUM_MAX) { mp_raise_msg_varg(&mp_type_ValueError, MP_ERROR_TEXT("UART(%d) does not exist"), uart_num); } // Defaults uart_config_t uartcfg = { .baud_rate = 115200, .data_bits = UART_DATA_8_BITS, .parity = UART_PARITY_DISABLE, .stop_bits = UART_STOP_BITS_1, .flow_ctrl = UART_HW_FLOWCTRL_DISABLE, .rx_flow_ctrl_thresh = 0 }; // create instance machine_uart_obj_t *self = mp_obj_malloc(machine_uart_obj_t, &machine_uart_type); self->uart_num = uart_num; self->bits = 8; self->parity = 0; self->stop = 1; self->rts = UART_PIN_NO_CHANGE; self->cts = UART_PIN_NO_CHANGE; self->txbuf = 256; self->rxbuf = 256; // IDF minimum self->timeout = 0; self->timeout_char = 0; self->invert = 0; self->flowcontrol = 0; switch (uart_num) { case UART_NUM_0: self->rx = UART_PIN_NO_CHANGE; // GPIO 3 self->tx = UART_PIN_NO_CHANGE; // GPIO 1 break; case UART_NUM_1: self->rx = 9; self->tx = 10; break; #if SOC_UART_NUM > 2 case UART_NUM_2: self->rx = 16; self->tx = 17; break; #endif } // Only reset the driver if it's not the REPL UART. if (uart_num != MICROPY_HW_UART_REPL) { // Remove any existing configuration uart_driver_delete(self->uart_num); // init the peripheral // Setup uart_param_config(self->uart_num, &uartcfg); uart_driver_install(uart_num, self->rxbuf, self->txbuf, 0, NULL, 0); } mp_map_t kw_args; mp_map_init_fixed_table(&kw_args, n_kw, args + n_args); machine_uart_init_helper(self, n_args - 1, args + 1, &kw_args); // Make sure pins are connected. uart_set_pin(self->uart_num, self->tx, self->rx, self->rts, self->cts); return MP_OBJ_FROM_PTR(self); } STATIC mp_obj_t machine_uart_init(size_t n_args, const mp_obj_t *args, mp_map_t *kw_args) { machine_uart_init_helper(args[0], n_args - 1, args + 1, kw_args); return mp_const_none; } MP_DEFINE_CONST_FUN_OBJ_KW(machine_uart_init_obj, 1, machine_uart_init); STATIC mp_obj_t machine_uart_deinit(mp_obj_t self_in) { machine_uart_obj_t *self = MP_OBJ_TO_PTR(self_in); uart_driver_delete(self->uart_num); return mp_const_none; } STATIC MP_DEFINE_CONST_FUN_OBJ_1(machine_uart_deinit_obj, machine_uart_deinit); STATIC mp_obj_t machine_uart_any(mp_obj_t self_in) { machine_uart_obj_t *self = MP_OBJ_TO_PTR(self_in); size_t rxbufsize; uart_get_buffered_data_len(self->uart_num, &rxbufsize); return MP_OBJ_NEW_SMALL_INT(rxbufsize); } STATIC MP_DEFINE_CONST_FUN_OBJ_1(machine_uart_any_obj, machine_uart_any); STATIC mp_obj_t machine_uart_sendbreak(mp_obj_t self_in) { machine_uart_obj_t *self = MP_OBJ_TO_PTR(self_in); // Save settings uint32_t baudrate; uart_get_baudrate(self->uart_num, &baudrate); // Synthesise the break condition by reducing the baud rate, // and cater for the worst case of 5 data bits, no parity. uart_wait_tx_done(self->uart_num, pdMS_TO_TICKS(1000)); uart_set_baudrate(self->uart_num, baudrate * 6 / 15); char buf[1] = {0}; uart_write_bytes(self->uart_num, buf, 1); uart_wait_tx_done(self->uart_num, pdMS_TO_TICKS(1000)); // Restore original setting uart_set_baudrate(self->uart_num, baudrate); return mp_const_none; } STATIC MP_DEFINE_CONST_FUN_OBJ_1(machine_uart_sendbreak_obj, machine_uart_sendbreak); STATIC mp_obj_t machine_uart_txdone(mp_obj_t self_in) { machine_uart_obj_t *self = MP_OBJ_TO_PTR(self_in); if (uart_wait_tx_done(self->uart_num, 0) == ESP_OK) { return mp_const_true; } else { return mp_const_false; } } STATIC MP_DEFINE_CONST_FUN_OBJ_1(machine_uart_txdone_obj, machine_uart_txdone); STATIC const mp_rom_map_elem_t machine_uart_locals_dict_table[] = { { MP_ROM_QSTR(MP_QSTR_init), MP_ROM_PTR(&machine_uart_init_obj) }, { MP_ROM_QSTR(MP_QSTR_deinit), MP_ROM_PTR(&machine_uart_deinit_obj) }, { MP_ROM_QSTR(MP_QSTR_any), MP_ROM_PTR(&machine_uart_any_obj) }, { MP_ROM_QSTR(MP_QSTR_flush), MP_ROM_PTR(&mp_stream_flush_obj) }, { MP_ROM_QSTR(MP_QSTR_read), MP_ROM_PTR(&mp_stream_read_obj) }, { MP_ROM_QSTR(MP_QSTR_readline), MP_ROM_PTR(&mp_stream_unbuffered_readline_obj) }, { MP_ROM_QSTR(MP_QSTR_readinto), MP_ROM_PTR(&mp_stream_readinto_obj) }, { MP_ROM_QSTR(MP_QSTR_write), MP_ROM_PTR(&mp_stream_write_obj) }, { MP_ROM_QSTR(MP_QSTR_sendbreak), MP_ROM_PTR(&machine_uart_sendbreak_obj) }, { MP_ROM_QSTR(MP_QSTR_txdone), MP_ROM_PTR(&machine_uart_txdone_obj) }, { MP_ROM_QSTR(MP_QSTR_INV_TX), MP_ROM_INT(UART_INV_TX) }, { MP_ROM_QSTR(MP_QSTR_INV_RX), MP_ROM_INT(UART_INV_RX) }, { MP_ROM_QSTR(MP_QSTR_INV_RTS), MP_ROM_INT(UART_INV_RTS) }, { MP_ROM_QSTR(MP_QSTR_INV_CTS), MP_ROM_INT(UART_INV_CTS) }, { MP_ROM_QSTR(MP_QSTR_RTS), MP_ROM_INT(UART_HW_FLOWCTRL_RTS) }, { MP_ROM_QSTR(MP_QSTR_CTS), MP_ROM_INT(UART_HW_FLOWCTRL_CTS) }, }; STATIC MP_DEFINE_CONST_DICT(machine_uart_locals_dict, machine_uart_locals_dict_table); STATIC mp_uint_t machine_uart_read(mp_obj_t self_in, void *buf_in, mp_uint_t size, int *errcode) { machine_uart_obj_t *self = MP_OBJ_TO_PTR(self_in); // make sure we want at least 1 char if (size == 0) { return 0; } TickType_t time_to_wait; if (self->timeout == 0) { time_to_wait = 0; } else { time_to_wait = pdMS_TO_TICKS(self->timeout); } int bytes_read = uart_read_bytes(self->uart_num, buf_in, size, time_to_wait); if (bytes_read <= 0) { *errcode = MP_EAGAIN; return MP_STREAM_ERROR; } return bytes_read; } STATIC mp_uint_t machine_uart_write(mp_obj_t self_in, const void *buf_in, mp_uint_t size, int *errcode) { machine_uart_obj_t *self = MP_OBJ_TO_PTR(self_in); int bytes_written = uart_write_bytes(self->uart_num, buf_in, size); if (bytes_written < 0) { *errcode = MP_EAGAIN; return MP_STREAM_ERROR; } // return number of bytes written return bytes_written; } STATIC mp_uint_t machine_uart_ioctl(mp_obj_t self_in, mp_uint_t request, uintptr_t arg, int *errcode) { machine_uart_obj_t *self = self_in; mp_uint_t ret; if (request == MP_STREAM_POLL) { mp_uint_t flags = arg; ret = 0; size_t rxbufsize; uart_get_buffered_data_len(self->uart_num, &rxbufsize); if ((flags & MP_STREAM_POLL_RD) && rxbufsize > 0) { ret |= MP_STREAM_POLL_RD; } if ((flags & MP_STREAM_POLL_WR) && 1) { // FIXME: uart_tx_any_room(self->uart_num) ret |= MP_STREAM_POLL_WR; } } else if (request == MP_STREAM_FLUSH) { // The timeout is estimated using the buffer size and the baudrate. // Take the worst case assumptions at 13 bit symbol size times 2. uint32_t baudrate; uart_get_baudrate(self->uart_num, &baudrate); uint32_t timeout = (3 + self->txbuf) * 13000 * 2 / baudrate; if (uart_wait_tx_done(self->uart_num, timeout) == ESP_OK) { ret = 0; } else { *errcode = MP_ETIMEDOUT; ret = MP_STREAM_ERROR; } } else { *errcode = MP_EINVAL; ret = MP_STREAM_ERROR; } return ret; } STATIC const mp_stream_p_t uart_stream_p = { .read = machine_uart_read, .write = machine_uart_write, .ioctl = machine_uart_ioctl, .is_text = false, }; MP_DEFINE_CONST_OBJ_TYPE( machine_uart_type, MP_QSTR_UART, MP_TYPE_FLAG_ITER_IS_STREAM, make_new, machine_uart_make_new, print, machine_uart_print, protocol, &uart_stream_p, locals_dict, &machine_uart_locals_dict );