/* * This file is part of the MicroPython project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2013-2018 Damien P. George * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "py/runtime.h" #include "extmod/machine_spi.h" #include "bufhelper.h" #include "spi.h" /******************************************************************************/ // MicroPython bindings for legacy pyb API // class pyb.SPI - a controller-driven serial protocol // // SPI is a serial protocol that is driven by a controller. At the physical level // there are 3 lines: SCK, MOSI, MISO. // // See usage model of I2C; SPI is very similar. Main difference is // parameters to init the SPI bus: // // from pyb import SPI // spi = SPI(1, SPI.CONTROLLER, baudrate=600000, polarity=1, phase=0, crc=0x7) // // Only required parameter is mode, SPI.CONTROLLER or SPI.PERIPHERAL. Polarity can be // 0 or 1, and is the level the idle clock line sits at. Phase can be 0 or 1 // to sample data on the first or second clock edge respectively. Crc can be // None for no CRC, or a polynomial specifier. // // Additional method for SPI: // // data = spi.send_recv(b'1234') # send 4 bytes and receive 4 bytes // buf = bytearray(4) // spi.send_recv(b'1234', buf) # send 4 bytes and receive 4 into buf // spi.send_recv(buf, buf) # send/recv 4 bytes from/to buf STATIC const pyb_spi_obj_t pyb_spi_obj[] = { {{&pyb_spi_type}, &spi_obj[0]}, {{&pyb_spi_type}, &spi_obj[1]}, {{&pyb_spi_type}, &spi_obj[2]}, {{&pyb_spi_type}, &spi_obj[3]}, {{&pyb_spi_type}, &spi_obj[4]}, {{&pyb_spi_type}, &spi_obj[5]}, }; STATIC void pyb_spi_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) { pyb_spi_obj_t *self = MP_OBJ_TO_PTR(self_in); spi_print(print, self->spi, true); } // init(mode, baudrate=328125, *, polarity=1, phase=0, bits=8, firstbit=SPI.MSB, ti=False, crc=None) // // Initialise the SPI bus with the given parameters: // - `mode` must be either `SPI.CONTROLLER` or `SPI.PERIPHERAL`. // - `baudrate` is the SCK clock rate (only sensible for a controller). STATIC mp_obj_t pyb_spi_init_helper(const pyb_spi_obj_t *self, size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) { static const mp_arg_t allowed_args[] = { { MP_QSTR_mode, MP_ARG_REQUIRED | MP_ARG_INT, {.u_int = 0} }, { MP_QSTR_baudrate, MP_ARG_INT, {.u_int = 328125} }, { MP_QSTR_prescaler, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0xffffffff} }, { MP_QSTR_polarity, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 1} }, { MP_QSTR_phase, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0} }, { MP_QSTR_dir, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = SPI_DIRECTION_2LINES} }, { MP_QSTR_bits, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 8} }, { MP_QSTR_nss, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = SPI_NSS_SOFT} }, { MP_QSTR_firstbit, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = SPI_FIRSTBIT_MSB} }, { MP_QSTR_ti, MP_ARG_KW_ONLY | MP_ARG_BOOL, {.u_bool = false} }, { MP_QSTR_crc, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_rom_obj = MP_ROM_NONE} }, }; // parse args mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)]; mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args); // set the SPI configuration values SPI_InitTypeDef *init = &self->spi->spi->Init; init->Mode = args[0].u_int; spi_set_params(self->spi, args[2].u_int, args[1].u_int, args[3].u_int, args[4].u_int, args[6].u_int, args[8].u_int); init->Direction = args[5].u_int; init->NSS = args[7].u_int; init->TIMode = args[9].u_bool ? SPI_TIMODE_ENABLE : SPI_TIMODE_DISABLE; if (args[10].u_obj == mp_const_none) { init->CRCCalculation = SPI_CRCCALCULATION_DISABLE; init->CRCPolynomial = 0; } else { init->CRCCalculation = SPI_CRCCALCULATION_ENABLE; init->CRCPolynomial = mp_obj_get_int(args[10].u_obj); } // init the SPI bus spi_init(self->spi, init->NSS != SPI_NSS_SOFT); return mp_const_none; } // constructor(bus, ...) // // Construct an SPI object on the given bus. `bus` can be 1 or 2. // With no additional parameters, the SPI object is created but not // initialised (it has the settings from the last initialisation of // the bus, if any). If extra arguments are given, the bus is initialised. // See `init` for parameters of initialisation. // // The physical pins of the SPI buses are: // - `SPI(1)` is on the X position: `(NSS, SCK, MISO, MOSI) = (X5, X6, X7, X8) = (PA4, PA5, PA6, PA7)` // - `SPI(2)` is on the Y position: `(NSS, SCK, MISO, MOSI) = (Y5, Y6, Y7, Y8) = (PB12, PB13, PB14, PB15)` // // At the moment, the NSS pin is not used by the SPI driver and is free // for other use. STATIC mp_obj_t pyb_spi_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *args) { // check arguments mp_arg_check_num(n_args, n_kw, 1, MP_OBJ_FUN_ARGS_MAX, true); // work out SPI bus int spi_id = spi_find_index(args[0]); // get SPI object const pyb_spi_obj_t *spi_obj = &pyb_spi_obj[spi_id - 1]; if (n_args > 1 || n_kw > 0) { // start the peripheral mp_map_t kw_args; mp_map_init_fixed_table(&kw_args, n_kw, args + n_args); pyb_spi_init_helper(spi_obj, n_args - 1, args + 1, &kw_args); } return MP_OBJ_FROM_PTR(spi_obj); } STATIC mp_obj_t pyb_spi_init(size_t n_args, const mp_obj_t *args, mp_map_t *kw_args) { return pyb_spi_init_helper(MP_OBJ_TO_PTR(args[0]), n_args - 1, args + 1, kw_args); } STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_spi_init_obj, 1, pyb_spi_init); // deinit() // Turn off the SPI bus. STATIC mp_obj_t pyb_spi_deinit(mp_obj_t self_in) { pyb_spi_obj_t *self = MP_OBJ_TO_PTR(self_in); spi_deinit(self->spi); return mp_const_none; } STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_spi_deinit_obj, pyb_spi_deinit); // send(send, *, timeout=5000) // Send data on the bus: // - `send` is the data to send (an integer to send, or a buffer object). // - `timeout` is the timeout in milliseconds to wait for the send. // // Return value: `None`. STATIC mp_obj_t pyb_spi_send(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) { // TODO assumes transmission size is 8-bits wide static const mp_arg_t allowed_args[] = { { MP_QSTR_send, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} }, { MP_QSTR_timeout, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 5000} }, }; // parse args pyb_spi_obj_t *self = MP_OBJ_TO_PTR(pos_args[0]); mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)]; mp_arg_parse_all(n_args - 1, pos_args + 1, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args); // get the buffer to send from mp_buffer_info_t bufinfo; uint8_t data[1]; pyb_buf_get_for_send(args[0].u_obj, &bufinfo, data); // send the data spi_transfer(self->spi, bufinfo.len, bufinfo.buf, NULL, args[1].u_int); return mp_const_none; } STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_spi_send_obj, 1, pyb_spi_send); // recv(recv, *, timeout=5000) // // Receive data on the bus: // - `recv` can be an integer, which is the number of bytes to receive, // or a mutable buffer, which will be filled with received bytes. // - `timeout` is the timeout in milliseconds to wait for the receive. // // Return value: if `recv` is an integer then a new buffer of the bytes received, // otherwise the same buffer that was passed in to `recv`. STATIC mp_obj_t pyb_spi_recv(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) { // TODO assumes transmission size is 8-bits wide static const mp_arg_t allowed_args[] = { { MP_QSTR_recv, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} }, { MP_QSTR_timeout, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 5000} }, }; // parse args pyb_spi_obj_t *self = MP_OBJ_TO_PTR(pos_args[0]); mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)]; mp_arg_parse_all(n_args - 1, pos_args + 1, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args); // get the buffer to receive into vstr_t vstr; mp_obj_t o_ret = pyb_buf_get_for_recv(args[0].u_obj, &vstr); // receive the data spi_transfer(self->spi, vstr.len, NULL, (uint8_t *)vstr.buf, args[1].u_int); // return the received data if (o_ret != MP_OBJ_NULL) { return o_ret; } else { return mp_obj_new_bytes_from_vstr(&vstr); } } STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_spi_recv_obj, 1, pyb_spi_recv); // send_recv(send, recv=None, *, timeout=5000) // // Send and receive data on the bus at the same time: // - `send` is the data to send (an integer to send, or a buffer object). // - `recv` is a mutable buffer which will be filled with received bytes. // It can be the same as `send`, or omitted. If omitted, a new buffer will // be created. // - `timeout` is the timeout in milliseconds to wait for the receive. // // Return value: the buffer with the received bytes. STATIC mp_obj_t pyb_spi_send_recv(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) { // TODO assumes transmission size is 8-bits wide static const mp_arg_t allowed_args[] = { { MP_QSTR_send, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} }, { MP_QSTR_recv, MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} }, { MP_QSTR_timeout, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 5000} }, }; // parse args pyb_spi_obj_t *self = MP_OBJ_TO_PTR(pos_args[0]); mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)]; mp_arg_parse_all(n_args - 1, pos_args + 1, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args); // get buffers to send from/receive to mp_buffer_info_t bufinfo_send; uint8_t data_send[1]; mp_buffer_info_t bufinfo_recv; vstr_t vstr_recv; mp_obj_t o_ret; if (args[0].u_obj == args[1].u_obj) { // same object for send and receive, it must be a r/w buffer mp_get_buffer_raise(args[0].u_obj, &bufinfo_send, MP_BUFFER_RW); bufinfo_recv = bufinfo_send; o_ret = args[0].u_obj; } else { // get the buffer to send from pyb_buf_get_for_send(args[0].u_obj, &bufinfo_send, data_send); // get the buffer to receive into if (args[1].u_obj == MP_OBJ_NULL) { // only send argument given, so create a fresh buffer of the send length vstr_init_len(&vstr_recv, bufinfo_send.len); bufinfo_recv.len = vstr_recv.len; bufinfo_recv.buf = vstr_recv.buf; o_ret = MP_OBJ_NULL; } else { // recv argument given mp_get_buffer_raise(args[1].u_obj, &bufinfo_recv, MP_BUFFER_WRITE); if (bufinfo_recv.len != bufinfo_send.len) { mp_raise_ValueError(MP_ERROR_TEXT("recv must be same length as send")); } o_ret = args[1].u_obj; } } // do the transfer spi_transfer(self->spi, bufinfo_send.len, bufinfo_send.buf, bufinfo_recv.buf, args[2].u_int); // return the received data if (o_ret != MP_OBJ_NULL) { return o_ret; } else { return mp_obj_new_bytes_from_vstr(&vstr_recv); } } STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_spi_send_recv_obj, 1, pyb_spi_send_recv); STATIC const mp_rom_map_elem_t pyb_spi_locals_dict_table[] = { // instance methods { MP_ROM_QSTR(MP_QSTR_init), MP_ROM_PTR(&pyb_spi_init_obj) }, { MP_ROM_QSTR(MP_QSTR_deinit), MP_ROM_PTR(&pyb_spi_deinit_obj) }, { MP_ROM_QSTR(MP_QSTR_read), MP_ROM_PTR(&mp_machine_spi_read_obj) }, { MP_ROM_QSTR(MP_QSTR_readinto), MP_ROM_PTR(&mp_machine_spi_readinto_obj) }, { MP_ROM_QSTR(MP_QSTR_write), MP_ROM_PTR(&mp_machine_spi_write_obj) }, { MP_ROM_QSTR(MP_QSTR_write_readinto), MP_ROM_PTR(&mp_machine_spi_write_readinto_obj) }, // legacy methods { MP_ROM_QSTR(MP_QSTR_send), MP_ROM_PTR(&pyb_spi_send_obj) }, { MP_ROM_QSTR(MP_QSTR_recv), MP_ROM_PTR(&pyb_spi_recv_obj) }, { MP_ROM_QSTR(MP_QSTR_send_recv), MP_ROM_PTR(&pyb_spi_send_recv_obj) }, // class constants /// \constant CONTROLLER - for initialising the bus to controller mode /// \constant PERIPHERAL - for initialising the bus to peripheral mode /// \constant MSB - set the first bit to MSB /// \constant LSB - set the first bit to LSB { MP_ROM_QSTR(MP_QSTR_CONTROLLER), MP_ROM_INT(SPI_MODE_MASTER) }, { MP_ROM_QSTR(MP_QSTR_PERIPHERAL), MP_ROM_INT(SPI_MODE_SLAVE) }, // TODO - remove MASTER/SLAVE when CONTROLLER/PERIPHERAL gain wide adoption { MP_ROM_QSTR(MP_QSTR_MASTER), MP_ROM_INT(SPI_MODE_MASTER) }, { MP_ROM_QSTR(MP_QSTR_SLAVE), MP_ROM_INT(SPI_MODE_SLAVE) }, { MP_ROM_QSTR(MP_QSTR_MSB), MP_ROM_INT(SPI_FIRSTBIT_MSB) }, { MP_ROM_QSTR(MP_QSTR_LSB), MP_ROM_INT(SPI_FIRSTBIT_LSB) }, /* TODO { MP_ROM_QSTR(MP_QSTR_DIRECTION_2LINES ((uint32_t)0x00000000) { MP_ROM_QSTR(MP_QSTR_DIRECTION_2LINES_RXONLY SPI_CR1_RXONLY { MP_ROM_QSTR(MP_QSTR_DIRECTION_1LINE SPI_CR1_BIDIMODE { MP_ROM_QSTR(MP_QSTR_NSS_SOFT SPI_CR1_SSM { MP_ROM_QSTR(MP_QSTR_NSS_HARD_INPUT ((uint32_t)0x00000000) { MP_ROM_QSTR(MP_QSTR_NSS_HARD_OUTPUT ((uint32_t)0x00040000) */ }; STATIC MP_DEFINE_CONST_DICT(pyb_spi_locals_dict, pyb_spi_locals_dict_table); STATIC void spi_transfer_machine(mp_obj_base_t *self_in, size_t len, const uint8_t *src, uint8_t *dest) { pyb_spi_obj_t *self = (pyb_spi_obj_t *)self_in; spi_transfer(self->spi, len, src, dest, SPI_TRANSFER_TIMEOUT(len)); } STATIC const mp_machine_spi_p_t pyb_spi_p = { .transfer = spi_transfer_machine, }; const mp_obj_type_t pyb_spi_type = { { &mp_type_type }, .name = MP_QSTR_SPI, .print = pyb_spi_print, .make_new = pyb_spi_make_new, .protocol = &pyb_spi_p, .locals_dict = (mp_obj_dict_t *)&pyb_spi_locals_dict, };