/* * This file is part of the MicroPython project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2013-2015 Damien P. George * Copyright (c) 2016 Paul Sokolovsky * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include #include #include "py/obj.h" #include "py/runtime.h" // This needs to be set before we include the RTOS headers #define USE_US_TIMER 1 #include "extmod/machine_mem.h" #include "extmod/machine_signal.h" #include "extmod/machine_pulse.h" #include "extmod/machine_i2c.h" #include "modmachine.h" #include "xtirq.h" #include "os_type.h" #include "osapi.h" #include "etshal.h" #include "ets_alt_task.h" #include "user_interface.h" #if MICROPY_PY_MACHINE //#define MACHINE_WAKE_IDLE (0x01) //#define MACHINE_WAKE_SLEEP (0x02) #define MACHINE_WAKE_DEEPSLEEP (0x04) extern const mp_obj_type_t esp_wdt_type; STATIC mp_obj_t machine_freq(size_t n_args, const mp_obj_t *args) { if (n_args == 0) { // get return mp_obj_new_int(system_get_cpu_freq() * 1000000); } else { // set mp_int_t freq = mp_obj_get_int(args[0]) / 1000000; if (freq != 80 && freq != 160) { mp_raise_ValueError("frequency can only be either 80Mhz or 160MHz"); } system_update_cpu_freq(freq); return mp_const_none; } } STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(machine_freq_obj, 0, 1, machine_freq); STATIC mp_obj_t machine_reset(void) { system_restart(); return mp_const_none; } STATIC MP_DEFINE_CONST_FUN_OBJ_0(machine_reset_obj, machine_reset); STATIC mp_obj_t machine_reset_cause(void) { return MP_OBJ_NEW_SMALL_INT(system_get_rst_info()->reason); } STATIC MP_DEFINE_CONST_FUN_OBJ_0(machine_reset_cause_obj, machine_reset_cause); STATIC mp_obj_t machine_unique_id(void) { uint32_t id = system_get_chip_id(); return mp_obj_new_bytes((byte*)&id, sizeof(id)); } STATIC MP_DEFINE_CONST_FUN_OBJ_0(machine_unique_id_obj, machine_unique_id); STATIC mp_obj_t machine_idle(void) { uint32_t t = mp_hal_ticks_cpu(); asm("waiti 0"); t = mp_hal_ticks_cpu() - t; ets_event_poll(); // handle any events after possibly a long wait (eg feed WDT) return MP_OBJ_NEW_SMALL_INT(t); } STATIC MP_DEFINE_CONST_FUN_OBJ_0(machine_idle_obj, machine_idle); STATIC mp_obj_t machine_lightsleep(size_t n_args, const mp_obj_t *args) { uint32_t max_us = 0xffffffff; if (n_args == 1) { mp_int_t max_ms = mp_obj_get_int(args[0]); if (max_ms < 0) { max_ms = 0; } max_us = max_ms * 1000; } uint32_t wifi_mode = wifi_get_opmode(); uint32_t start = system_get_time(); while (system_get_time() - start <= max_us) { ets_event_poll(); if (wifi_mode == NULL_MODE) { // Can only idle if the wifi is off asm("waiti 0"); } } return mp_const_none; } STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(machine_lightsleep_obj, 0, 1, machine_lightsleep); STATIC mp_obj_t machine_deepsleep(size_t n_args, const mp_obj_t *args) { // default to sleep forever uint32_t sleep_us = 0; // see if RTC.ALARM0 should wake the device if (pyb_rtc_alarm0_wake & MACHINE_WAKE_DEEPSLEEP) { uint64_t t = pyb_rtc_get_us_since_2000(); if (pyb_rtc_alarm0_expiry <= t) { sleep_us = 1; // alarm already expired so wake immediately } else { uint64_t delta = pyb_rtc_alarm0_expiry - t; if (delta <= 0xffffffff) { // sleep for the desired time sleep_us = delta; } else { // overflow, just set to maximum sleep time sleep_us = 0xffffffff; } } } // if an argument is given then that's the maximum time to sleep for if (n_args == 1) { mp_int_t max_ms = mp_obj_get_int(args[0]); if (max_ms <= 0) { max_ms = 1; } uint32_t max_us = max_ms * 1000; if (sleep_us == 0 || max_us < sleep_us) { sleep_us = max_us; } } // prepare for RTC reset at wake up rtc_prepare_deepsleep(sleep_us); // put the device in a deep-sleep state system_deep_sleep_set_option(0); // default power down mode; TODO check this system_deep_sleep(sleep_us); for (;;) { // we must not return ets_loop_iter(); } return mp_const_none; } STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(machine_deepsleep_obj, 0, 1, machine_deepsleep); // These values are from the datasheet #define ESP_TIMER_US_MIN (100) #define ESP_TIMER_US_MAX (0xfffffff) #define ESP_TIMER_MS_MAX (0x689d0) typedef struct _esp_timer_obj_t { mp_obj_base_t base; os_timer_t timer; uint32_t remain_ms; // if non-zero, remaining time to handle large periods uint32_t period_ms; // if non-zero, periodic timer with a large period mp_obj_t callback; } esp_timer_obj_t; STATIC void esp_timer_arm_ms(esp_timer_obj_t *self, uint32_t ms, bool repeat) { if (ms <= ESP_TIMER_MS_MAX) { self->remain_ms = 0; self->period_ms = 0; } else { self->remain_ms = ms - ESP_TIMER_MS_MAX; if (repeat) { repeat = false; self->period_ms = ms; } else { self->period_ms = 0; } ms = ESP_TIMER_MS_MAX; } os_timer_arm(&self->timer, ms, repeat); } STATIC void esp_timer_arm_us(esp_timer_obj_t *self, uint32_t us, bool repeat) { if (us < ESP_TIMER_US_MIN) { us = ESP_TIMER_US_MIN; } if (us <= ESP_TIMER_US_MAX) { self->remain_ms = 0; self->period_ms = 0; os_timer_arm_us(&self->timer, us, repeat); } else { esp_timer_arm_ms(self, us / 1000, repeat); } } const mp_obj_type_t esp_timer_type; STATIC void esp_timer_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) { esp_timer_obj_t *self = self_in; mp_printf(print, "Timer(%p)", &self->timer); } STATIC mp_obj_t esp_timer_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *args) { mp_arg_check_num(n_args, n_kw, 1, 1, false); esp_timer_obj_t *tim = m_new_obj(esp_timer_obj_t); tim->base.type = &esp_timer_type; return tim; } STATIC void esp_timer_cb(void *arg) { esp_timer_obj_t *self = arg; if (self->remain_ms != 0) { // Handle periods larger than the maximum system period uint32_t next_period_ms = self->remain_ms; if (next_period_ms > ESP_TIMER_MS_MAX) { next_period_ms = ESP_TIMER_MS_MAX; } self->remain_ms -= next_period_ms; os_timer_arm(&self->timer, next_period_ms, false); } else { mp_sched_schedule(self->callback, self); if (self->period_ms != 0) { // A periodic timer with a larger period: reschedule it esp_timer_arm_ms(self, self->period_ms, true); } } } STATIC mp_obj_t esp_timer_init_helper(esp_timer_obj_t *self, size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) { enum { ARG_mode, ARG_callback, ARG_period, ARG_tick_hz, ARG_freq, }; static const mp_arg_t allowed_args[] = { { MP_QSTR_mode, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 1} }, { MP_QSTR_callback, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = mp_const_none} }, { MP_QSTR_period, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0xffffffff} }, { MP_QSTR_tick_hz, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 1000} }, #if MICROPY_PY_BUILTINS_FLOAT { MP_QSTR_freq, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = mp_const_none} }, #else { MP_QSTR_freq, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0xffffffff} }, #endif }; // parse args mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)]; mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args); self->callback = args[ARG_callback].u_obj; // Be sure to disarm timer before making any changes os_timer_disarm(&self->timer); os_timer_setfn(&self->timer, esp_timer_cb, self); #if MICROPY_PY_BUILTINS_FLOAT if (args[ARG_freq].u_obj != mp_const_none) { mp_float_t freq = mp_obj_get_float(args[ARG_freq].u_obj); if (freq < 0.001) { esp_timer_arm_ms(self, (mp_int_t)(1000 / freq), args[ARG_mode].u_int); } else { esp_timer_arm_us(self, (mp_int_t)(1000000 / freq), args[ARG_mode].u_int); } } #else if (args[ARG_freq].u_int != 0xffffffff) { esp_timer_arm_us(self, 1000000 / args[ARG_freq].u_int, args[ARG_mode].u_int); } #endif else { mp_int_t period = args[ARG_period].u_int; mp_int_t hz = args[ARG_tick_hz].u_int; if (hz == 1000) { esp_timer_arm_ms(self, period, args[ARG_mode].u_int); } else if (hz == 1000000) { esp_timer_arm_us(self, period, args[ARG_mode].u_int); } else { // Use a long long to ensure that we don't either overflow or loose accuracy uint64_t period_us = (((uint64_t)period) * 1000000) / hz; if (period_us < 0x80000000ull) { esp_timer_arm_us(self, (mp_int_t)period_us, args[ARG_mode].u_int); } else { esp_timer_arm_ms(self, (mp_int_t)(period_us / 1000), args[ARG_mode].u_int); } } } return mp_const_none; } STATIC mp_obj_t esp_timer_init(size_t n_args, const mp_obj_t *args, mp_map_t *kw_args) { return esp_timer_init_helper(args[0], n_args - 1, args + 1, kw_args); } STATIC MP_DEFINE_CONST_FUN_OBJ_KW(esp_timer_init_obj, 1, esp_timer_init); STATIC mp_obj_t esp_timer_deinit(mp_obj_t self_in) { esp_timer_obj_t *self = self_in; os_timer_disarm(&self->timer); return mp_const_none; } STATIC MP_DEFINE_CONST_FUN_OBJ_1(esp_timer_deinit_obj, esp_timer_deinit); STATIC const mp_rom_map_elem_t esp_timer_locals_dict_table[] = { { MP_ROM_QSTR(MP_QSTR_deinit), MP_ROM_PTR(&esp_timer_deinit_obj) }, { MP_ROM_QSTR(MP_QSTR_init), MP_ROM_PTR(&esp_timer_init_obj) }, // { MP_ROM_QSTR(MP_QSTR_callback), MP_ROM_PTR(&esp_timer_callback_obj) }, { MP_ROM_QSTR(MP_QSTR_ONE_SHOT), MP_ROM_INT(false) }, { MP_ROM_QSTR(MP_QSTR_PERIODIC), MP_ROM_INT(true) }, }; STATIC MP_DEFINE_CONST_DICT(esp_timer_locals_dict, esp_timer_locals_dict_table); const mp_obj_type_t esp_timer_type = { { &mp_type_type }, .name = MP_QSTR_Timer, .print = esp_timer_print, .make_new = esp_timer_make_new, .locals_dict = (mp_obj_dict_t*)&esp_timer_locals_dict, }; // this bit is unused in the Xtensa PS register #define ETS_LOOP_ITER_BIT (12) STATIC mp_obj_t machine_disable_irq(void) { uint32_t state = disable_irq(); state = (state & ~(1 << ETS_LOOP_ITER_BIT)) | (ets_loop_iter_disable << ETS_LOOP_ITER_BIT); ets_loop_iter_disable = 1; return mp_obj_new_int(state); } MP_DEFINE_CONST_FUN_OBJ_0(machine_disable_irq_obj, machine_disable_irq); STATIC mp_obj_t machine_enable_irq(mp_obj_t state_in) { uint32_t state = mp_obj_get_int(state_in); ets_loop_iter_disable = (state >> ETS_LOOP_ITER_BIT) & 1; enable_irq(state & ~(1 << ETS_LOOP_ITER_BIT)); return mp_const_none; } MP_DEFINE_CONST_FUN_OBJ_1(machine_enable_irq_obj, machine_enable_irq); // Custom version of this function that feeds system WDT if necessary mp_uint_t machine_time_pulse_us(mp_hal_pin_obj_t pin, int pulse_level, mp_uint_t timeout_us) { int nchanges = 2; uint32_t start = system_get_time(); // in microseconds for (;;) { uint32_t dt = system_get_time() - start; // Check if pin changed to wanted value if (mp_hal_pin_read(pin) == pulse_level) { if (--nchanges == 0) { return dt; } pulse_level = 1 - pulse_level; start = system_get_time(); continue; } // Check for timeout if (dt >= timeout_us) { return (mp_uint_t)-nchanges; } // Only feed WDT every now and then, to make sure edge timing is accurate if ((dt & 0xffff) == 0xffff && !ets_loop_dont_feed_sw_wdt) { system_soft_wdt_feed(); } } } STATIC const mp_rom_map_elem_t machine_module_globals_table[] = { { MP_ROM_QSTR(MP_QSTR___name__), MP_ROM_QSTR(MP_QSTR_umachine) }, { MP_ROM_QSTR(MP_QSTR_mem8), MP_ROM_PTR(&machine_mem8_obj) }, { MP_ROM_QSTR(MP_QSTR_mem16), MP_ROM_PTR(&machine_mem16_obj) }, { MP_ROM_QSTR(MP_QSTR_mem32), MP_ROM_PTR(&machine_mem32_obj) }, { MP_ROM_QSTR(MP_QSTR_freq), MP_ROM_PTR(&machine_freq_obj) }, { MP_ROM_QSTR(MP_QSTR_reset), MP_ROM_PTR(&machine_reset_obj) }, { MP_ROM_QSTR(MP_QSTR_reset_cause), MP_ROM_PTR(&machine_reset_cause_obj) }, { MP_ROM_QSTR(MP_QSTR_unique_id), MP_ROM_PTR(&machine_unique_id_obj) }, { MP_ROM_QSTR(MP_QSTR_idle), MP_ROM_PTR(&machine_idle_obj) }, { MP_ROM_QSTR(MP_QSTR_sleep), MP_ROM_PTR(&machine_lightsleep_obj) }, { MP_ROM_QSTR(MP_QSTR_lightsleep), MP_ROM_PTR(&machine_lightsleep_obj) }, { MP_ROM_QSTR(MP_QSTR_deepsleep), MP_ROM_PTR(&machine_deepsleep_obj) }, { MP_ROM_QSTR(MP_QSTR_disable_irq), MP_ROM_PTR(&machine_disable_irq_obj) }, { MP_ROM_QSTR(MP_QSTR_enable_irq), MP_ROM_PTR(&machine_enable_irq_obj) }, { MP_ROM_QSTR(MP_QSTR_time_pulse_us), MP_ROM_PTR(&machine_time_pulse_us_obj) }, { MP_ROM_QSTR(MP_QSTR_RTC), MP_ROM_PTR(&pyb_rtc_type) }, { MP_ROM_QSTR(MP_QSTR_Timer), MP_ROM_PTR(&esp_timer_type) }, { MP_ROM_QSTR(MP_QSTR_WDT), MP_ROM_PTR(&esp_wdt_type) }, { MP_ROM_QSTR(MP_QSTR_Pin), MP_ROM_PTR(&pyb_pin_type) }, { MP_ROM_QSTR(MP_QSTR_Signal), MP_ROM_PTR(&machine_signal_type) }, { MP_ROM_QSTR(MP_QSTR_PWM), MP_ROM_PTR(&pyb_pwm_type) }, { MP_ROM_QSTR(MP_QSTR_ADC), MP_ROM_PTR(&pyb_adc_type) }, { MP_ROM_QSTR(MP_QSTR_UART), MP_ROM_PTR(&pyb_uart_type) }, #if MICROPY_PY_MACHINE_I2C { MP_ROM_QSTR(MP_QSTR_I2C), MP_ROM_PTR(&machine_i2c_type) }, #endif #if MICROPY_PY_MACHINE_SPI { MP_ROM_QSTR(MP_QSTR_SPI), MP_ROM_PTR(&machine_hspi_type) }, #endif // wake abilities { MP_ROM_QSTR(MP_QSTR_DEEPSLEEP), MP_ROM_INT(MACHINE_WAKE_DEEPSLEEP) }, // reset causes { MP_ROM_QSTR(MP_QSTR_PWRON_RESET), MP_ROM_INT(REASON_DEFAULT_RST) }, { MP_ROM_QSTR(MP_QSTR_HARD_RESET), MP_ROM_INT(REASON_EXT_SYS_RST) }, { MP_ROM_QSTR(MP_QSTR_DEEPSLEEP_RESET), MP_ROM_INT(REASON_DEEP_SLEEP_AWAKE) }, { MP_ROM_QSTR(MP_QSTR_WDT_RESET), MP_ROM_INT(REASON_WDT_RST) }, { MP_ROM_QSTR(MP_QSTR_SOFT_RESET), MP_ROM_INT(REASON_SOFT_RESTART) }, }; STATIC MP_DEFINE_CONST_DICT(machine_module_globals, machine_module_globals_table); const mp_obj_module_t mp_module_machine = { .base = { &mp_type_module }, .globals = (mp_obj_dict_t*)&machine_module_globals, }; #endif // MICROPY_PY_MACHINE