/* * This file is part of the MicroPython project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2017-2018 Glenn Ruben Bakke * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include #include #include "py/nlr.h" #include "py/runtime.h" #include "py/mphal.h" #if MICROPY_PY_MACHINE_ADC #include "adc.h" #if NRF51 #include "nrfx_adc.h" #else #include "nrfx_saadc.h" #endif typedef struct _machine_adc_obj_t { mp_obj_base_t base; uint8_t id; #if NRF51 uint8_t ain; #endif } machine_adc_obj_t; STATIC const machine_adc_obj_t machine_adc_obj[] = { #if NRF51 {{&machine_adc_type}, .id = 0, .ain = NRF_ADC_CONFIG_INPUT_0}, {{&machine_adc_type}, .id = 1, .ain = NRF_ADC_CONFIG_INPUT_1}, {{&machine_adc_type}, .id = 2, .ain = NRF_ADC_CONFIG_INPUT_2}, {{&machine_adc_type}, .id = 3, .ain = NRF_ADC_CONFIG_INPUT_3}, {{&machine_adc_type}, .id = 4, .ain = NRF_ADC_CONFIG_INPUT_4}, {{&machine_adc_type}, .id = 5, .ain = NRF_ADC_CONFIG_INPUT_5}, {{&machine_adc_type}, .id = 6, .ain = NRF_ADC_CONFIG_INPUT_6}, {{&machine_adc_type}, .id = 7, .ain = NRF_ADC_CONFIG_INPUT_7}, #else {{&machine_adc_type}, .id = 0}, {{&machine_adc_type}, .id = 1}, {{&machine_adc_type}, .id = 2}, {{&machine_adc_type}, .id = 3}, {{&machine_adc_type}, .id = 4}, {{&machine_adc_type}, .id = 5}, {{&machine_adc_type}, .id = 6}, {{&machine_adc_type}, .id = 7}, #endif }; void adc_init0(void) { #if defined(NRF52_SERIES) const uint8_t interrupt_priority = 6; nrfx_saadc_init(interrupt_priority); #endif } STATIC int adc_find(mp_obj_t id) { int adc_idx; if (mp_obj_is_int(id)) { // Given an integer id adc_idx = mp_obj_get_int(id); } else { // Assume it's a pin-compatible object and convert it to an ADC channel number mp_hal_pin_obj_t pin = mp_hal_get_pin_obj(id); if (pin->adc_num & PIN_ADC1) { adc_idx = pin->adc_channel; } else { mp_raise_ValueError(MP_ERROR_TEXT("invalid Pin for ADC")); } } if (adc_idx >= 0 && adc_idx < MP_ARRAY_SIZE(machine_adc_obj) && machine_adc_obj[adc_idx].id != (uint8_t)-1) { return adc_idx; } mp_raise_ValueError(MP_ERROR_TEXT("ADC doesn't exist")); } /// \method __str__() /// Return a string describing the ADC object. STATIC void machine_adc_print(const mp_print_t *print, mp_obj_t o, mp_print_kind_t kind) { machine_adc_obj_t *self = o; mp_printf(print, "ADC(%u)", self->id); } /******************************************************************************/ /* MicroPython bindings for machine API */ // for make_new STATIC mp_obj_t machine_adc_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *all_args) { enum { ARG_id }; static const mp_arg_t allowed_args[] = { { MP_QSTR_id, MP_ARG_OBJ, {.u_obj = MP_OBJ_NEW_SMALL_INT(-1) } }, }; // parse args mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)]; mp_arg_parse_all_kw_array(n_args, n_kw, all_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args); int adc_id = adc_find(args[ARG_id].u_obj); const machine_adc_obj_t *self = &machine_adc_obj[adc_id]; #if defined(NRF52_SERIES) const nrfx_saadc_channel_t config = { \ .channel_config = { .resistor_p = NRF_SAADC_RESISTOR_DISABLED, .resistor_n = NRF_SAADC_RESISTOR_DISABLED, .gain = NRF_SAADC_GAIN1_4, .reference = NRF_SAADC_REFERENCE_VDD4, .acq_time = NRF_SAADC_ACQTIME_3US, .mode = NRF_SAADC_MODE_SINGLE_ENDED, .burst = NRF_SAADC_BURST_DISABLED, }, .pin_p = (nrf_saadc_input_t)(1 + self->id), // pin_p=0 is AIN0, pin_p=8 is AIN7 .pin_n = NRF_SAADC_INPUT_DISABLED, .channel_index = self->id, }; nrfx_saadc_channels_config(&config, 1); #endif return MP_OBJ_FROM_PTR(self); } int16_t machine_adc_value_read(machine_adc_obj_t * adc_obj) { #if NRF51 nrf_adc_value_t value = 0; nrfx_adc_channel_t channel_config = { .config.resolution = NRF_ADC_CONFIG_RES_8BIT, .config.input = NRF_ADC_CONFIG_SCALING_INPUT_TWO_THIRDS, .config.reference = NRF_ADC_CONFIG_REF_VBG, .config.input = adc_obj->ain, .config.extref = ADC_CONFIG_EXTREFSEL_None << ADC_CONFIG_EXTREFSEL_Pos // Currently not defined in nrfx/hal. }; nrfx_adc_sample_convert(&channel_config, &value); #else // NRF52 nrf_saadc_value_t value = 0; nrfx_saadc_simple_mode_set((1 << adc_obj->id), NRF_SAADC_RESOLUTION_8BIT, NRF_SAADC_INPUT_DISABLED, NULL); nrfx_saadc_buffer_set(&value, 1); nrfx_saadc_mode_trigger(); #endif return value; } // read_u16() STATIC mp_obj_t machine_adc_read_u16(mp_obj_t self_in) { machine_adc_obj_t *self = self_in; int16_t raw = machine_adc_value_read(self); #if defined(NRF52_SERIES) // raw is signed but the channel is in single-ended mode and this method cannot return negative values if (raw < 0) { raw = 0; } #endif // raw is an 8-bit value return MP_OBJ_NEW_SMALL_INT(raw << 8 | raw); } STATIC MP_DEFINE_CONST_FUN_OBJ_1(mp_machine_adc_read_u16_obj, machine_adc_read_u16); /// \method value() /// Read adc level. mp_obj_t machine_adc_value(mp_obj_t self_in) { machine_adc_obj_t *self = self_in; int16_t value = machine_adc_value_read(self); return MP_OBJ_NEW_SMALL_INT(value); } STATIC MP_DEFINE_CONST_FUN_OBJ_1(mp_machine_adc_value_obj, machine_adc_value); #if NRF51 #define ADC_REF_VOLTAGE_IN_MILLIVOLT (1200) // Reference voltage in mV (1.2V). #define ADC_PRE_SCALING_MULTIPLIER (3) // VDD 1/3 prescaling as input. Hence, multiplied by 3 to get the value of the battery voltage. #else // NRF52 #define ADC_REF_VOLTAGE_IN_MILLIVOLT (600) // Reference voltage in mV (0.6V). #define ADC_PRE_SCALING_MULTIPLIER (6) // VDD 1/6 prescaling as input. Hence, multiplied by 6 to get the value of the battery voltage. #endif #define DIODE_VOLT_DROP_MILLIVOLT (270) // Voltage drop over diode. #define BATTERY_MILLIVOLT(VALUE) \ ((((VALUE) * ADC_REF_VOLTAGE_IN_MILLIVOLT) / 255) * ADC_PRE_SCALING_MULTIPLIER) static uint8_t battery_level_in_percent(const uint16_t mvolts) { uint8_t battery_level; if (mvolts >= 3000) { battery_level = 100; } else if (mvolts > 2900) { battery_level = 100 - ((3000 - mvolts) * 58) / 100; } else if (mvolts > 2740) { battery_level = 42 - ((2900 - mvolts) * 24) / 160; } else if (mvolts > 2440) { battery_level = 18 - ((2740 - mvolts) * 12) / 300; } else if (mvolts > 2100) { battery_level = 6 - ((2440 - mvolts) * 6) / 340; } else { battery_level = 0; } return battery_level; } /// \method battery_level() /// Get battery level in percentage. mp_obj_t machine_adc_battery_level(void) { #if NRF51 nrf_adc_value_t value = 0; nrfx_adc_channel_t channel_config = { .config.resolution = NRF_ADC_CONFIG_RES_8BIT, .config.input = NRF_ADC_CONFIG_SCALING_SUPPLY_ONE_THIRD, .config.reference = NRF_ADC_CONFIG_REF_VBG, .config.input = NRF_ADC_CONFIG_INPUT_DISABLED, .config.extref = ADC_CONFIG_EXTREFSEL_None << ADC_CONFIG_EXTREFSEL_Pos // Currently not defined in nrfx/hal. }; nrfx_adc_sample_convert(&channel_config, &value); #else // NRF52 nrf_saadc_value_t value = 0; const nrfx_saadc_channel_t config = { \ .channel_config = { .resistor_p = NRF_SAADC_RESISTOR_DISABLED, .resistor_n = NRF_SAADC_RESISTOR_DISABLED, .gain = NRF_SAADC_GAIN1_6, .reference = NRF_SAADC_REFERENCE_INTERNAL, .acq_time = NRF_SAADC_ACQTIME_3US, .mode = NRF_SAADC_MODE_SINGLE_ENDED, .burst = NRF_SAADC_BURST_DISABLED, }, .pin_p = NRF_SAADC_INPUT_VDD, .pin_n = NRF_SAADC_INPUT_DISABLED, .channel_index = 0, }; nrfx_saadc_channels_config(&config, 1); nrfx_saadc_simple_mode_set((1 << 0), NRF_SAADC_RESOLUTION_8BIT, NRF_SAADC_INPUT_DISABLED, NULL); nrfx_saadc_buffer_set(&value, 1); nrfx_saadc_mode_trigger(); #endif uint16_t batt_lvl_in_milli_volts = BATTERY_MILLIVOLT(value) + DIODE_VOLT_DROP_MILLIVOLT; uint16_t batt_in_percent = battery_level_in_percent(batt_lvl_in_milli_volts); return MP_OBJ_NEW_SMALL_INT(batt_in_percent); } STATIC MP_DEFINE_CONST_FUN_OBJ_0(mp_machine_adc_battery_level_obj, machine_adc_battery_level); STATIC const mp_rom_map_elem_t machine_adc_locals_dict_table[] = { // instance methods { MP_ROM_QSTR(MP_QSTR_read_u16), MP_ROM_PTR(&mp_machine_adc_read_u16_obj) }, { MP_ROM_QSTR(MP_QSTR_value), MP_ROM_PTR(&mp_machine_adc_value_obj) }, // class methods { MP_ROM_QSTR(MP_QSTR_battery_level), MP_ROM_PTR(&mp_machine_adc_battery_level_obj) }, }; STATIC MP_DEFINE_CONST_DICT(machine_adc_locals_dict, machine_adc_locals_dict_table); MP_DEFINE_CONST_OBJ_TYPE( machine_adc_type, MP_QSTR_ADC, MP_TYPE_FLAG_NONE, machine_adc_make_new, locals_dict, (mp_obj_dict_t*)&machine_adc_locals_dict, print, machine_adc_print ); #endif // MICROPY_PY_MACHINE_ADC