/* * This file is part of the Micro Python project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2013, 2014 Damien P. George * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "py/nlr.h" #include "py/runtime.h" #include "lib/fatfs/ff.h" #include "extmod/fsusermount.h" #include "sdcard.h" #include "pin.h" #include "genhdr/pins.h" #include "bufhelper.h" #include "dma.h" #include "irq.h" #if MICROPY_HW_HAS_SDCARD #if defined(MCU_SERIES_F7) // The F7 series calls the peripheral SDMMC rather than SDIO, so provide some // #defines for backwards compatability. #define SDIO SDMMC1 #define SDIO_CLOCK_EDGE_RISING SDMMC_CLOCK_EDGE_RISING #define SDIO_CLOCK_EDGE_FALLING SDMMC_CLOCK_EDGE_FALLING #define SDIO_CLOCK_BYPASS_DISABLE SDMMC_CLOCK_BYPASS_DISABLE #define SDIO_CLOCK_BYPASS_ENABLE SDMMC_CLOCK_BYPASS_ENABLE #define SDIO_CLOCK_POWER_SAVE_DISABLE SDMMC_CLOCK_POWER_SAVE_DISABLE #define SDIO_CLOCK_POWER_SAVE_ENABLE SDMMC_CLOCK_POWER_SAVE_ENABLE #define SDIO_BUS_WIDE_1B SDMMC_BUS_WIDE_1B #define SDIO_BUS_WIDE_4B SDMMC_BUS_WIDE_4B #define SDIO_BUS_WIDE_8B SDMMC_BUS_WIDE_8B #define SDIO_HARDWARE_FLOW_CONTROL_DISABLE SDMMC_HARDWARE_FLOW_CONTROL_DISABLE #define SDIO_HARDWARE_FLOW_CONTROL_ENABLE SDMMC_HARDWARE_FLOW_CONTROL_ENABLE #define SDIO_TRANSFER_CLK_DIV SDMMC_TRANSFER_CLK_DIV #endif // TODO: Since SDIO is fundamentally half-duplex, we really only need to // tie up one DMA channel. However, the HAL DMA API doesn't // seem to provide a convenient way to change the direction. I believe that // its as simple as changing the CR register and the Init.Direction field // and make DMA_SetConfig public. // TODO: I think that as an optimization, we can allocate these dynamically // if an sd card is detected. This will save approx 260 bytes of RAM // when no sdcard was being used. static SD_HandleTypeDef sd_handle; static DMA_HandleTypeDef sd_rx_dma, sd_tx_dma; // Parameters to dma_init() for SDIO tx and rx. static const DMA_InitTypeDef dma_init_struct_sdio = { .Channel = 0, .Direction = 0, .PeriphInc = DMA_PINC_DISABLE, .MemInc = DMA_MINC_ENABLE, .PeriphDataAlignment = DMA_PDATAALIGN_WORD, .MemDataAlignment = DMA_MDATAALIGN_WORD, .Mode = DMA_PFCTRL, .Priority = DMA_PRIORITY_VERY_HIGH, .FIFOMode = DMA_FIFOMODE_ENABLE, .FIFOThreshold = DMA_FIFO_THRESHOLD_FULL, .MemBurst = DMA_MBURST_INC4, .PeriphBurst = DMA_PBURST_INC4, }; void sdcard_init(void) { GPIO_InitTypeDef GPIO_Init_Structure; // invalidate the sd_handle sd_handle.Instance = NULL; // configure SD GPIO // we do this here an not in HAL_SD_MspInit because it apparently // makes it more robust to have the pins always pulled high GPIO_Init_Structure.Mode = GPIO_MODE_AF_PP; GPIO_Init_Structure.Pull = GPIO_PULLUP; GPIO_Init_Structure.Speed = GPIO_SPEED_HIGH; GPIO_Init_Structure.Alternate = GPIO_AF12_SDIO; GPIO_Init_Structure.Pin = GPIO_PIN_8 | GPIO_PIN_9 | GPIO_PIN_10 | GPIO_PIN_11 | GPIO_PIN_12; HAL_GPIO_Init(GPIOC, &GPIO_Init_Structure); GPIO_Init_Structure.Pin = GPIO_PIN_2; HAL_GPIO_Init(GPIOD, &GPIO_Init_Structure); // configure the SD card detect pin // we do this here so we can detect if the SD card is inserted before powering it on GPIO_Init_Structure.Mode = GPIO_MODE_INPUT; GPIO_Init_Structure.Pull = MICROPY_HW_SDCARD_DETECT_PULL; GPIO_Init_Structure.Speed = GPIO_SPEED_HIGH; GPIO_Init_Structure.Pin = MICROPY_HW_SDCARD_DETECT_PIN.pin_mask; HAL_GPIO_Init(MICROPY_HW_SDCARD_DETECT_PIN.gpio, &GPIO_Init_Structure); } void HAL_SD_MspInit(SD_HandleTypeDef *hsd) { // enable SDIO clock __SDIO_CLK_ENABLE(); // NVIC configuration for SDIO interrupts HAL_NVIC_SetPriority(SDIO_IRQn, IRQ_PRI_SDIO, IRQ_SUBPRI_SDIO); HAL_NVIC_EnableIRQ(SDIO_IRQn); // GPIO have already been initialised by sdcard_init } void HAL_SD_MspDeInit(SD_HandleTypeDef *hsd) { HAL_NVIC_DisableIRQ(SDIO_IRQn); __SDIO_CLK_DISABLE(); } bool sdcard_is_present(void) { return HAL_GPIO_ReadPin(MICROPY_HW_SDCARD_DETECT_PIN.gpio, MICROPY_HW_SDCARD_DETECT_PIN.pin_mask) == MICROPY_HW_SDCARD_DETECT_PRESENT; } bool sdcard_power_on(void) { if (!sdcard_is_present()) { return false; } if (sd_handle.Instance) { return true; } // SD device interface configuration sd_handle.Instance = SDIO; sd_handle.Init.ClockEdge = SDIO_CLOCK_EDGE_RISING; sd_handle.Init.ClockBypass = SDIO_CLOCK_BYPASS_DISABLE; sd_handle.Init.ClockPowerSave = SDIO_CLOCK_POWER_SAVE_DISABLE; sd_handle.Init.BusWide = SDIO_BUS_WIDE_1B; sd_handle.Init.HardwareFlowControl = SDIO_HARDWARE_FLOW_CONTROL_DISABLE; sd_handle.Init.ClockDiv = SDIO_TRANSFER_CLK_DIV; // init the SD interface, with retry if it's not ready yet HAL_SD_CardInfoTypedef cardinfo; for (int retry = 10; HAL_SD_Init(&sd_handle, &cardinfo) != SD_OK; retry--) { if (retry == 0) { goto error; } HAL_Delay(50); } // configure the SD bus width for wide operation if (HAL_SD_WideBusOperation_Config(&sd_handle, SDIO_BUS_WIDE_4B) != SD_OK) { HAL_SD_DeInit(&sd_handle); goto error; } return true; error: sd_handle.Instance = NULL; return false; } void sdcard_power_off(void) { if (!sd_handle.Instance) { return; } HAL_SD_DeInit(&sd_handle); sd_handle.Instance = NULL; } uint64_t sdcard_get_capacity_in_bytes(void) { if (sd_handle.Instance == NULL) { return 0; } HAL_SD_CardInfoTypedef cardinfo; HAL_SD_Get_CardInfo(&sd_handle, &cardinfo); return cardinfo.CardCapacity; } void SDIO_IRQHandler(void) { IRQ_ENTER(SDIO_IRQn); HAL_SD_IRQHandler(&sd_handle); IRQ_EXIT(SDIO_IRQn); } mp_uint_t sdcard_read_blocks(uint8_t *dest, uint32_t block_num, uint32_t num_blocks) { // check that dest pointer is aligned on a 4-byte boundary if (((uint32_t)dest & 3) != 0) { return SD_ERROR; } // check that SD card is initialised if (sd_handle.Instance == NULL) { return SD_ERROR; } HAL_SD_ErrorTypedef err = SD_OK; if (query_irq() == IRQ_STATE_ENABLED) { // we must disable USB irqs to prevent MSC contention with SD card uint32_t basepri = raise_irq_pri(IRQ_PRI_OTG_FS); dma_init(&sd_rx_dma, DMA_STREAM_SDIO_RX, &dma_init_struct_sdio, DMA_CHANNEL_SDIO_RX, DMA_PERIPH_TO_MEMORY, &sd_handle); sd_handle.hdmarx = &sd_rx_dma; err = HAL_SD_ReadBlocks_BlockNumber_DMA(&sd_handle, (uint32_t*)dest, block_num, SDCARD_BLOCK_SIZE, num_blocks); if (err == SD_OK) { // wait for DMA transfer to finish, with a large timeout err = HAL_SD_CheckReadOperation(&sd_handle, 100000000); } dma_deinit(sd_handle.hdmarx); sd_handle.hdmarx = NULL; restore_irq_pri(basepri); } else { err = HAL_SD_ReadBlocks_BlockNumber(&sd_handle, (uint32_t*)dest, block_num, SDCARD_BLOCK_SIZE, num_blocks); } return err; } mp_uint_t sdcard_write_blocks(const uint8_t *src, uint32_t block_num, uint32_t num_blocks) { // check that src pointer is aligned on a 4-byte boundary if (((uint32_t)src & 3) != 0) { return SD_ERROR; } // check that SD card is initialised if (sd_handle.Instance == NULL) { return SD_ERROR; } HAL_SD_ErrorTypedef err = SD_OK; if (query_irq() == IRQ_STATE_ENABLED) { // we must disable USB irqs to prevent MSC contention with SD card uint32_t basepri = raise_irq_pri(IRQ_PRI_OTG_FS); dma_init(&sd_tx_dma, DMA_STREAM_SDIO_TX, &dma_init_struct_sdio, DMA_CHANNEL_SDIO_TX, DMA_MEMORY_TO_PERIPH, &sd_handle); sd_handle.hdmatx = &sd_tx_dma; err = HAL_SD_WriteBlocks_BlockNumber_DMA(&sd_handle, (uint32_t*)src, block_num, SDCARD_BLOCK_SIZE, num_blocks); if (err == SD_OK) { // wait for DMA transfer to finish, with a large timeout err = HAL_SD_CheckWriteOperation(&sd_handle, 100000000); } dma_deinit(sd_handle.hdmatx); sd_handle.hdmatx = NULL; restore_irq_pri(basepri); } else { err = HAL_SD_WriteBlocks_BlockNumber(&sd_handle, (uint32_t*)src, block_num, SDCARD_BLOCK_SIZE, num_blocks); } return err; } /******************************************************************************/ // Micro Python bindings // // Expose the SD card as an object with the block protocol. // there is a singleton SDCard object const mp_obj_base_t pyb_sdcard_obj = {&pyb_sdcard_type}; STATIC mp_obj_t pyb_sdcard_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *args) { // check arguments mp_arg_check_num(n_args, n_kw, 0, 0, false); // return singleton object return (mp_obj_t)&pyb_sdcard_obj; } STATIC mp_obj_t sd_present(mp_obj_t self) { return mp_obj_new_bool(sdcard_is_present()); } STATIC MP_DEFINE_CONST_FUN_OBJ_1(sd_present_obj, sd_present); STATIC mp_obj_t sd_power(mp_obj_t self, mp_obj_t state) { bool result; if (mp_obj_is_true(state)) { result = sdcard_power_on(); } else { sdcard_power_off(); result = true; } return mp_obj_new_bool(result); } STATIC MP_DEFINE_CONST_FUN_OBJ_2(sd_power_obj, sd_power); STATIC mp_obj_t sd_info(mp_obj_t self) { if (sd_handle.Instance == NULL) { return mp_const_none; } HAL_SD_CardInfoTypedef cardinfo; HAL_SD_Get_CardInfo(&sd_handle, &cardinfo); // cardinfo.SD_csd and cardinfo.SD_cid have lots of info but we don't use them mp_obj_t tuple[3] = { mp_obj_new_int_from_ull(cardinfo.CardCapacity), mp_obj_new_int_from_uint(cardinfo.CardBlockSize), mp_obj_new_int(cardinfo.CardType), }; return mp_obj_new_tuple(3, tuple); } STATIC MP_DEFINE_CONST_FUN_OBJ_1(sd_info_obj, sd_info); // now obsolete, kept for backwards compatibility STATIC mp_obj_t sd_read(mp_obj_t self, mp_obj_t block_num) { uint8_t *dest = m_new(uint8_t, SDCARD_BLOCK_SIZE); mp_uint_t ret = sdcard_read_blocks(dest, mp_obj_get_int(block_num), 1); if (ret != 0) { m_del(uint8_t, dest, SDCARD_BLOCK_SIZE); nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_Exception, "sdcard_read_blocks failed [%u]", ret)); } return mp_obj_new_bytearray_by_ref(SDCARD_BLOCK_SIZE, dest); } STATIC MP_DEFINE_CONST_FUN_OBJ_2(sd_read_obj, sd_read); // now obsolete, kept for backwards compatibility STATIC mp_obj_t sd_write(mp_obj_t self, mp_obj_t block_num, mp_obj_t data) { mp_buffer_info_t bufinfo; mp_get_buffer_raise(data, &bufinfo, MP_BUFFER_READ); if (bufinfo.len % SDCARD_BLOCK_SIZE != 0) { nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "writes must be a multiple of %d bytes", SDCARD_BLOCK_SIZE)); } mp_uint_t ret = sdcard_write_blocks(bufinfo.buf, mp_obj_get_int(block_num), bufinfo.len / SDCARD_BLOCK_SIZE); if (ret != 0) { nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_Exception, "sdcard_write_blocks failed [%u]", ret)); } return mp_const_none; } STATIC MP_DEFINE_CONST_FUN_OBJ_3(sd_write_obj, sd_write); STATIC mp_obj_t pyb_sdcard_readblocks(mp_obj_t self, mp_obj_t block_num, mp_obj_t buf) { mp_buffer_info_t bufinfo; mp_get_buffer_raise(buf, &bufinfo, MP_BUFFER_WRITE); mp_uint_t ret = sdcard_read_blocks(bufinfo.buf, mp_obj_get_int(block_num), bufinfo.len / SDCARD_BLOCK_SIZE); return mp_obj_new_bool(ret == 0); } STATIC MP_DEFINE_CONST_FUN_OBJ_3(pyb_sdcard_readblocks_obj, pyb_sdcard_readblocks); STATIC mp_obj_t pyb_sdcard_writeblocks(mp_obj_t self, mp_obj_t block_num, mp_obj_t buf) { mp_buffer_info_t bufinfo; mp_get_buffer_raise(buf, &bufinfo, MP_BUFFER_READ); mp_uint_t ret = sdcard_write_blocks(bufinfo.buf, mp_obj_get_int(block_num), bufinfo.len / SDCARD_BLOCK_SIZE); return mp_obj_new_bool(ret == 0); } STATIC MP_DEFINE_CONST_FUN_OBJ_3(pyb_sdcard_writeblocks_obj, pyb_sdcard_writeblocks); STATIC mp_obj_t pyb_sdcard_ioctl(mp_obj_t self, mp_obj_t cmd_in, mp_obj_t arg_in) { mp_int_t cmd = mp_obj_get_int(cmd_in); switch (cmd) { case BP_IOCTL_INIT: if (!sdcard_power_on()) { return MP_OBJ_NEW_SMALL_INT(-1); // error } return MP_OBJ_NEW_SMALL_INT(0); // success case BP_IOCTL_DEINIT: sdcard_power_off(); return MP_OBJ_NEW_SMALL_INT(0); // success case BP_IOCTL_SYNC: // nothing to do return MP_OBJ_NEW_SMALL_INT(0); // success case BP_IOCTL_SEC_COUNT: return MP_OBJ_NEW_SMALL_INT(0); // TODO case BP_IOCTL_SEC_SIZE: return MP_OBJ_NEW_SMALL_INT(SDCARD_BLOCK_SIZE); default: // unknown command return MP_OBJ_NEW_SMALL_INT(-1); // error } } STATIC MP_DEFINE_CONST_FUN_OBJ_3(pyb_sdcard_ioctl_obj, pyb_sdcard_ioctl); STATIC const mp_map_elem_t pyb_sdcard_locals_dict_table[] = { { MP_OBJ_NEW_QSTR(MP_QSTR_present), (mp_obj_t)&sd_present_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_power), (mp_obj_t)&sd_power_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_info), (mp_obj_t)&sd_info_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_read), (mp_obj_t)&sd_read_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_write), (mp_obj_t)&sd_write_obj }, // block device protocol { MP_OBJ_NEW_QSTR(MP_QSTR_readblocks), (mp_obj_t)&pyb_sdcard_readblocks_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_writeblocks), (mp_obj_t)&pyb_sdcard_writeblocks_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_ioctl), (mp_obj_t)&pyb_sdcard_ioctl_obj }, }; STATIC MP_DEFINE_CONST_DICT(pyb_sdcard_locals_dict, pyb_sdcard_locals_dict_table); const mp_obj_type_t pyb_sdcard_type = { { &mp_type_type }, .name = MP_QSTR_SDCard, .make_new = pyb_sdcard_make_new, .locals_dict = (mp_obj_t)&pyb_sdcard_locals_dict, }; void sdcard_init_vfs(fs_user_mount_t *vfs) { vfs->flags |= FSUSER_NATIVE | FSUSER_HAVE_IOCTL; vfs->readblocks[0] = (mp_obj_t)&pyb_sdcard_readblocks_obj; vfs->readblocks[1] = (mp_obj_t)&pyb_sdcard_obj; vfs->readblocks[2] = (mp_obj_t)sdcard_read_blocks; // native version vfs->writeblocks[0] = (mp_obj_t)&pyb_sdcard_writeblocks_obj; vfs->writeblocks[1] = (mp_obj_t)&pyb_sdcard_obj; vfs->writeblocks[2] = (mp_obj_t)sdcard_write_blocks; // native version vfs->u.ioctl[0] = (mp_obj_t)&pyb_sdcard_ioctl_obj; vfs->u.ioctl[1] = (mp_obj_t)&pyb_sdcard_obj; } #endif // MICROPY_HW_HAS_SDCARD