/* * This file is part of the Micro Python project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2014 Paul Sokolovsky * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include #include #include #include "py/nlr.h" #include "py/runtime.h" #include "py/objtuple.h" #include "py/binary.h" #if MICROPY_PY_UCTYPES /// \module uctypes - Access data structures in memory /// /// The module allows to define layout of raw data structure (using terms /// of C language), and then access memory buffers using this definition. /// The module also provides convenience functions to access memory buffers /// contained in Python objects or wrap memory buffers in Python objects. /// \constant UINT8_1 - uint8_t value type /// \class struct - C-like structure /// /// Encapsulalation of in-memory data structure. This class doesn't define /// any methods, only attribute access (for structure fields) and /// indexing (for pointer and array fields). /// /// Usage: /// /// # Define layout of a structure with 2 fields /// # 0 and 4 are byte offsets of fields from the beginning of struct /// # they are logically ORed with field type /// FOO_STRUCT = {"a": 0 | uctypes.UINT32, "b": 4 | uctypes.UINT8} /// /// # Example memory buffer to access (contained in bytes object) /// buf = b"\x64\0\0\0\0x14" /// /// # Create structure object referring to address of /// # the data in the buffer above /// s = uctypes.struct(FOO_STRUCT, uctypes.addressof(buf)) /// /// # Access fields /// print(s.a, s.b) /// # Result: /// # 100, 20 #define LAYOUT_LITTLE_ENDIAN (0) #define LAYOUT_BIG_ENDIAN (1) #define LAYOUT_NATIVE (2) #define VAL_TYPE_BITS 4 #define BITF_LEN_BITS 5 #define BITF_OFF_BITS 5 #define OFFSET_BITS 17 #if VAL_TYPE_BITS + BITF_LEN_BITS + BITF_OFF_BITS + OFFSET_BITS != 31 #error Invalid encoding field length #endif enum { UINT8, INT8, UINT16, INT16, UINT32, INT32, UINT64, INT64, BFUINT8, BFINT8, BFUINT16, BFINT16, BFUINT32, BFINT32, FLOAT32, FLOAT64, }; #define AGG_TYPE_BITS 2 enum { STRUCT, PTR, ARRAY, BITFIELD, }; // Here we need to set sign bit right #define TYPE2SMALLINT(x, nbits) ((((int)x) << (32 - nbits)) >> 1) #define GET_TYPE(x, nbits) (((x) >> (31 - nbits)) & ((1 << nbits) - 1)) // Bit 0 is "is_signed" #define GET_SCALAR_SIZE(val_type) (1 << ((val_type) >> 1)) #define VALUE_MASK(type_nbits) ~((int)0x80000000 >> type_nbits) #define IS_SCALAR_ARRAY(tuple_desc) ((tuple_desc)->len == 2) // We cannot apply the below to INT8, as their range [-128, 127] #define IS_SCALAR_ARRAY_OF_BYTES(tuple_desc) (GET_TYPE(MP_OBJ_SMALL_INT_VALUE((tuple_desc)->items[1]), VAL_TYPE_BITS) == UINT8) // "struct" in uctypes context means "structural", i.e. aggregate, type. STATIC const mp_obj_type_t uctypes_struct_type; typedef struct _mp_obj_uctypes_struct_t { mp_obj_base_t base; mp_obj_t desc; byte *addr; uint32_t flags; } mp_obj_uctypes_struct_t; STATIC NORETURN void syntax_error(void) { nlr_raise(mp_obj_new_exception_msg(&mp_type_TypeError, "syntax error in uctypes descriptor")); } STATIC mp_obj_t uctypes_struct_make_new(mp_obj_t type_in, mp_uint_t n_args, mp_uint_t n_kw, const mp_obj_t *args) { (void)n_kw; if (n_args < 2 || n_args > 3) { syntax_error(); } mp_obj_uctypes_struct_t *o = m_new_obj(mp_obj_uctypes_struct_t); o->base.type = type_in; o->desc = args[0]; o->addr = (void*)mp_obj_get_int(args[1]); o->flags = LAYOUT_NATIVE; if (n_args == 3) { o->flags = mp_obj_get_int(args[2]); } return o; } STATIC void uctypes_struct_print(void (*print)(void *env, const char *fmt, ...), void *env, mp_obj_t self_in, mp_print_kind_t kind) { (void)kind; mp_obj_uctypes_struct_t *self = self_in; const char *typen = "unk"; if (MP_OBJ_IS_TYPE(self->desc, &mp_type_dict)) { typen = "STRUCT"; } else if (MP_OBJ_IS_TYPE(self->desc, &mp_type_tuple)) { mp_obj_tuple_t *t = (mp_obj_tuple_t*)self->desc; mp_int_t offset = MP_OBJ_SMALL_INT_VALUE(t->items[0]); uint agg_type = GET_TYPE(offset, AGG_TYPE_BITS); switch (agg_type) { case PTR: typen = "PTR"; break; case ARRAY: typen = "ARRAY"; break; } } else { typen = "ERROR"; } print(env, "", typen, self->addr); } // Get size of any type descriptor STATIC mp_uint_t uctypes_struct_size(mp_obj_t desc_in, mp_uint_t *max_field_size); // Get size of scalar type descriptor static inline mp_uint_t uctypes_struct_scalar_size(int val_type) { if (val_type == FLOAT32) { return 4; } else { return GET_SCALAR_SIZE(val_type & 7); } } // Get size of aggregate type descriptor STATIC mp_uint_t uctypes_struct_agg_size(mp_obj_tuple_t *t, mp_uint_t *max_field_size) { mp_uint_t total_size = 0; mp_int_t offset_ = MP_OBJ_SMALL_INT_VALUE(t->items[0]); mp_uint_t agg_type = GET_TYPE(offset_, AGG_TYPE_BITS); switch (agg_type) { case STRUCT: return uctypes_struct_size(t->items[1], max_field_size); case PTR: if (sizeof(void*) > *max_field_size) { *max_field_size = sizeof(void*); } return sizeof(void*); case ARRAY: { mp_int_t arr_sz = MP_OBJ_SMALL_INT_VALUE(t->items[1]); uint val_type = GET_TYPE(arr_sz, VAL_TYPE_BITS); arr_sz &= VALUE_MASK(VAL_TYPE_BITS); mp_uint_t item_s; if (t->len == 2) { // Elements of array are scalar item_s = GET_SCALAR_SIZE(val_type); if (item_s > *max_field_size) { *max_field_size = item_s; } } else { // Elements of array are aggregates item_s = uctypes_struct_size(t->items[2], max_field_size); } return item_s * arr_sz; } default: assert(0); } return total_size; } STATIC mp_uint_t uctypes_struct_size(mp_obj_t desc_in, mp_uint_t *max_field_size) { mp_obj_dict_t *d = desc_in; mp_uint_t total_size = 0; if (!MP_OBJ_IS_TYPE(desc_in, &mp_type_dict)) { if (MP_OBJ_IS_TYPE(desc_in, &mp_type_tuple)) { return uctypes_struct_agg_size((mp_obj_tuple_t*)desc_in, max_field_size); } else if (MP_OBJ_IS_SMALL_INT(desc_in)) { // We allow sizeof on both type definitions and structures/structure fields, // but scalar structure field is lowered into native Python int, so all // type info is lost. So, we cannot say if it's scalar type description, // or such lowered scalar. nlr_raise(mp_obj_new_exception_msg(&mp_type_TypeError, "Cannot unambiguously get sizeof scalar")); } syntax_error(); } for (mp_uint_t i = 0; i < d->map.alloc; i++) { if (MP_MAP_SLOT_IS_FILLED(&d->map, i)) { mp_obj_t v = d->map.table[i].value; if (MP_OBJ_IS_SMALL_INT(v)) { mp_uint_t offset = MP_OBJ_SMALL_INT_VALUE(v); mp_uint_t val_type = GET_TYPE(offset, VAL_TYPE_BITS); offset &= VALUE_MASK(VAL_TYPE_BITS); mp_uint_t s = uctypes_struct_scalar_size(val_type); if (s > *max_field_size) { *max_field_size = s; } if (offset + s > total_size) { total_size = offset + s; } } else { if (!MP_OBJ_IS_TYPE(v, &mp_type_tuple)) { syntax_error(); } mp_obj_tuple_t *t = (mp_obj_tuple_t*)v; mp_int_t offset = MP_OBJ_SMALL_INT_VALUE(t->items[0]); offset &= VALUE_MASK(AGG_TYPE_BITS); mp_uint_t s = uctypes_struct_agg_size(t, max_field_size); if (offset + s > total_size) { total_size = offset + s; } } } } // Round size up to alignment of biggest field total_size = (total_size + *max_field_size - 1) & ~(*max_field_size - 1); return total_size; } STATIC mp_obj_t uctypes_struct_sizeof(mp_obj_t obj_in) { mp_uint_t max_field_size = 0; if (MP_OBJ_IS_TYPE(obj_in, &mp_type_bytearray)) { return mp_obj_len(obj_in); } // We can apply sizeof either to structure definition (a dict) // or to instantiated structure if (MP_OBJ_IS_TYPE(obj_in, &uctypes_struct_type)) { // Extract structure definition mp_obj_uctypes_struct_t *obj = obj_in; obj_in = obj->desc; } mp_uint_t size = uctypes_struct_size(obj_in, &max_field_size); return MP_OBJ_NEW_SMALL_INT(size); } STATIC MP_DEFINE_CONST_FUN_OBJ_1(uctypes_struct_sizeof_obj, uctypes_struct_sizeof); STATIC inline mp_obj_t get_unaligned(uint val_type, void *p, int big_endian) { mp_int_t val = mp_binary_get_int(GET_SCALAR_SIZE(val_type), val_type & 1, big_endian, p); if (val_type == UINT32) { return mp_obj_new_int_from_uint(val); } else { return mp_obj_new_int(val); } } STATIC inline void set_unaligned(uint val_type, byte *p, int big_endian, mp_obj_t val) { char struct_type = big_endian ? '>' : '<'; static const char type2char[8] = "BbHhIiQq"; mp_binary_set_val(struct_type, type2char[val_type], val, &p); } static inline mp_uint_t get_aligned_basic(uint val_type, void *p) { switch (val_type) { case UINT8: return *(uint8_t*)p; case UINT16: return *(uint16_t*)p; case UINT32: return *(uint32_t*)p; } assert(0); return 0; } static inline void set_aligned_basic(uint val_type, void *p, mp_uint_t v) { switch (val_type) { case UINT8: *(uint8_t*)p = (uint8_t)v; return; case UINT16: *(uint16_t*)p = (uint16_t)v; return; case UINT32: *(uint32_t*)p = (uint32_t)v; return; } assert(0); } STATIC mp_obj_t get_aligned(uint val_type, void *p, mp_int_t index) { switch (val_type) { case UINT8: return MP_OBJ_NEW_SMALL_INT(((uint8_t*)p)[index]); case INT8: return MP_OBJ_NEW_SMALL_INT(((int8_t*)p)[index]); case UINT16: return MP_OBJ_NEW_SMALL_INT(((uint16_t*)p)[index]); case INT16: return MP_OBJ_NEW_SMALL_INT(((int16_t*)p)[index]); case UINT32: return mp_obj_new_int_from_uint(((uint32_t*)p)[index]); case INT32: return mp_obj_new_int(((int32_t*)p)[index]); case UINT64: case INT64: return mp_obj_new_int_from_ll(((int64_t*)p)[index]); #if MICROPY_PY_BUILTINS_FLOAT case FLOAT32: return mp_obj_new_float(((float*)p)[index]); case FLOAT64: return mp_obj_new_float(((double*)p)[index]); #endif default: assert(0); return MP_OBJ_NULL; } } STATIC void set_aligned(uint val_type, void *p, mp_int_t index, mp_obj_t val) { mp_int_t v = mp_obj_get_int(val); switch (val_type) { case UINT8: ((uint8_t*)p)[index] = (uint8_t)v; return; case INT8: ((int8_t*)p)[index] = (int8_t)v; return; case UINT16: ((uint16_t*)p)[index] = (uint16_t)v; return; case INT16: ((int16_t*)p)[index] = (int16_t)v; return; case UINT32: ((uint32_t*)p)[index] = (uint32_t)v; return; case INT32: ((int32_t*)p)[index] = (int32_t)v; return; default: assert(0); } } STATIC mp_obj_t uctypes_struct_attr_op(mp_obj_t self_in, qstr attr, mp_obj_t set_val) { mp_obj_uctypes_struct_t *self = self_in; // TODO: Support at least OrderedDict in addition if (!MP_OBJ_IS_TYPE(self->desc, &mp_type_dict)) { nlr_raise(mp_obj_new_exception_msg(&mp_type_TypeError, "struct: no fields")); } mp_obj_t deref = mp_obj_dict_get(self->desc, MP_OBJ_NEW_QSTR(attr)); if (MP_OBJ_IS_SMALL_INT(deref)) { mp_int_t offset = MP_OBJ_SMALL_INT_VALUE(deref); mp_uint_t val_type = GET_TYPE(offset, VAL_TYPE_BITS); offset &= VALUE_MASK(VAL_TYPE_BITS); //printf("scalar type=%d offset=%x\n", val_type, offset); if (val_type <= INT64) { // printf("size=%d\n", GET_SCALAR_SIZE(val_type)); if (self->flags == LAYOUT_NATIVE) { if (set_val == MP_OBJ_NULL) { return get_aligned(val_type, self->addr + offset, 0); } else { set_aligned(val_type, self->addr + offset, 0, set_val); return set_val; // just !MP_OBJ_NULL } } else { if (set_val == MP_OBJ_NULL) { return get_unaligned(val_type, self->addr + offset, self->flags); } else { set_unaligned(val_type, self->addr + offset, self->flags, set_val); return set_val; // just !MP_OBJ_NULL } } } else if (val_type >= BFUINT8 && val_type <= BFINT32) { uint bit_offset = (offset >> 17) & 31; uint bit_len = (offset >> 22) & 31; offset &= (1 << 17) - 1; mp_uint_t val; if (self->flags == LAYOUT_NATIVE) { val = get_aligned_basic(val_type & 6, self->addr + offset); } else { val = mp_binary_get_int(GET_SCALAR_SIZE(val_type & 7), val_type & 1, self->flags, self->addr + offset); } if (set_val == MP_OBJ_NULL) { val >>= bit_offset; val &= (1 << bit_len) - 1; // TODO: signed assert((val_type & 1) == 0); return mp_obj_new_int(val); } else { mp_uint_t set_val_int = (mp_uint_t)mp_obj_get_int(set_val); mp_uint_t mask = (1 << bit_len) - 1; set_val_int &= mask; set_val_int <<= bit_offset; mask <<= bit_offset; val = (val & ~mask) | set_val_int; if (self->flags == LAYOUT_NATIVE) { set_aligned_basic(val_type & 6, self->addr + offset, val); } else { mp_binary_set_int(GET_SCALAR_SIZE(val_type & 7), self->flags == LAYOUT_BIG_ENDIAN, self->addr + offset, val); } return set_val; // just !MP_OBJ_NULL } } assert(0); return MP_OBJ_NULL; } if (!MP_OBJ_IS_TYPE(deref, &mp_type_tuple)) { syntax_error(); } if (set_val != MP_OBJ_NULL) { // Cannot assign to aggregate syntax_error(); } mp_obj_tuple_t *sub = (mp_obj_tuple_t*)deref; mp_int_t offset = MP_OBJ_SMALL_INT_VALUE(sub->items[0]); mp_uint_t agg_type = GET_TYPE(offset, AGG_TYPE_BITS); offset &= VALUE_MASK(AGG_TYPE_BITS); //printf("agg type=%d offset=%x\n", agg_type, offset); switch (agg_type) { case STRUCT: { mp_obj_uctypes_struct_t *o = m_new_obj(mp_obj_uctypes_struct_t); o->base.type = &uctypes_struct_type; o->desc = sub->items[1]; o->addr = self->addr + offset; o->flags = self->flags; return o; } case ARRAY: { mp_uint_t dummy; if (IS_SCALAR_ARRAY(sub) && IS_SCALAR_ARRAY_OF_BYTES(sub)) { return mp_obj_new_bytearray_by_ref(uctypes_struct_agg_size(sub, &dummy), self->addr + offset); } // Fall thru to return uctypes struct object } case PTR: { mp_obj_uctypes_struct_t *o = m_new_obj(mp_obj_uctypes_struct_t); o->base.type = &uctypes_struct_type; o->desc = sub; o->addr = self->addr + offset; o->flags = self->flags; //printf("PTR/ARR base addr=%p\n", o->addr); return o; } } // Should be unreachable once all cases are handled return MP_OBJ_NULL; } STATIC void uctypes_struct_attr(mp_obj_t self_in, qstr attr, mp_obj_t *dest) { if (dest[0] == MP_OBJ_NULL) { // load attribute mp_obj_t val = uctypes_struct_attr_op(self_in, attr, MP_OBJ_NULL); dest[0] = val; } else { // delete/store attribute if (uctypes_struct_attr_op(self_in, attr, dest[1]) != MP_OBJ_NULL) { dest[0] = MP_OBJ_NULL; // indicate success } } } STATIC mp_obj_t uctypes_struct_subscr(mp_obj_t self_in, mp_obj_t index_in, mp_obj_t value) { mp_obj_uctypes_struct_t *self = self_in; if (value == MP_OBJ_NULL) { // delete return MP_OBJ_NULL; // op not supported } else if (value == MP_OBJ_SENTINEL) { // load if (!MP_OBJ_IS_TYPE(self->desc, &mp_type_tuple)) { nlr_raise(mp_obj_new_exception_msg(&mp_type_TypeError, "struct: cannot index")); } mp_obj_tuple_t *t = (mp_obj_tuple_t*)self->desc; mp_int_t offset = MP_OBJ_SMALL_INT_VALUE(t->items[0]); uint agg_type = GET_TYPE(offset, AGG_TYPE_BITS); mp_int_t index = MP_OBJ_SMALL_INT_VALUE(index_in); if (agg_type == ARRAY) { mp_int_t arr_sz = MP_OBJ_SMALL_INT_VALUE(t->items[1]); uint val_type = GET_TYPE(arr_sz, VAL_TYPE_BITS); arr_sz &= VALUE_MASK(VAL_TYPE_BITS); if (index >= arr_sz) { nlr_raise(mp_obj_new_exception_msg(&mp_type_IndexError, "struct: index out of range")); } if (t->len == 2) { byte *p = self->addr + GET_SCALAR_SIZE(val_type) * index; return get_unaligned(val_type, p, self->flags); } else { mp_uint_t dummy = 0; mp_uint_t size = uctypes_struct_size(t->items[2], &dummy); mp_obj_uctypes_struct_t *o = m_new_obj(mp_obj_uctypes_struct_t); o->base.type = &uctypes_struct_type; o->desc = t->items[2]; o->addr = self->addr + size * index; o->flags = self->flags; return o; } } else if (agg_type == PTR) { byte *p = *(void**)self->addr; if (MP_OBJ_IS_SMALL_INT(t->items[1])) { uint val_type = GET_TYPE(MP_OBJ_SMALL_INT_VALUE(t->items[1]), VAL_TYPE_BITS); return get_aligned(val_type, p, index); } else { mp_uint_t dummy = 0; mp_uint_t size = uctypes_struct_size(t->items[1], &dummy); mp_obj_uctypes_struct_t *o = m_new_obj(mp_obj_uctypes_struct_t); o->base.type = &uctypes_struct_type; o->desc = t->items[1]; o->addr = p + size * index; o->flags = self->flags; return o; } } assert(0); return MP_OBJ_NULL; } else { // store return MP_OBJ_NULL; // op not supported } } /// \function addressof() /// Return address of object's data (applies to object providing buffer /// interface). STATIC mp_obj_t uctypes_struct_addressof(mp_obj_t buf) { mp_buffer_info_t bufinfo; mp_get_buffer_raise(buf, &bufinfo, MP_BUFFER_READ); return mp_obj_new_int((mp_int_t)bufinfo.buf); } MP_DEFINE_CONST_FUN_OBJ_1(uctypes_struct_addressof_obj, uctypes_struct_addressof); /// \function bytearray_at() /// Capture memory at given address of given size as bytearray. Memory is /// captured by reference (and thus memory pointed by bytearray may change /// or become invalid at later time). Use bytes_at() to capture by value. STATIC mp_obj_t uctypes_struct_bytearray_at(mp_obj_t ptr, mp_obj_t size) { return mp_obj_new_bytearray_by_ref(mp_obj_int_get_truncated(size), (void*)mp_obj_int_get_truncated(ptr)); } MP_DEFINE_CONST_FUN_OBJ_2(uctypes_struct_bytearray_at_obj, uctypes_struct_bytearray_at); /// \function bytes_at() /// Capture memory at given address of given size as bytes. Memory is /// captured by value, i.e. copied. Use bytearray_at() to capture by reference /// ("zero copy"). STATIC mp_obj_t uctypes_struct_bytes_at(mp_obj_t ptr, mp_obj_t size) { return mp_obj_new_bytes((void*)mp_obj_int_get_truncated(ptr), mp_obj_int_get_truncated(size)); } MP_DEFINE_CONST_FUN_OBJ_2(uctypes_struct_bytes_at_obj, uctypes_struct_bytes_at); STATIC const mp_obj_type_t uctypes_struct_type = { { &mp_type_type }, .name = MP_QSTR_struct, .print = uctypes_struct_print, .make_new = uctypes_struct_make_new, .attr = uctypes_struct_attr, .subscr = uctypes_struct_subscr, }; STATIC const mp_map_elem_t mp_module_uctypes_globals_table[] = { { MP_OBJ_NEW_QSTR(MP_QSTR___name__), MP_OBJ_NEW_QSTR(MP_QSTR_uctypes) }, { MP_OBJ_NEW_QSTR(MP_QSTR_struct), (mp_obj_t)&uctypes_struct_type }, { MP_OBJ_NEW_QSTR(MP_QSTR_sizeof), (mp_obj_t)&uctypes_struct_sizeof_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_addressof), (mp_obj_t)&uctypes_struct_addressof_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_bytes_at), (mp_obj_t)&uctypes_struct_bytes_at_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_bytearray_at), (mp_obj_t)&uctypes_struct_bytearray_at_obj }, /// \moduleref uctypes /// \constant NATIVE - Native structure layout - native endianness, /// platform-specific field alignment { MP_OBJ_NEW_QSTR(MP_QSTR_NATIVE), MP_OBJ_NEW_SMALL_INT(LAYOUT_NATIVE) }, /// \constant LITTLE_ENDIAN - Little-endian structure layout, tightly packed /// (no alignment constraints) { MP_OBJ_NEW_QSTR(MP_QSTR_LITTLE_ENDIAN), MP_OBJ_NEW_SMALL_INT(LAYOUT_LITTLE_ENDIAN) }, /// \constant BIG_ENDIAN - Big-endian structure layout, tightly packed /// (no alignment constraints) { MP_OBJ_NEW_QSTR(MP_QSTR_BIG_ENDIAN), MP_OBJ_NEW_SMALL_INT(LAYOUT_BIG_ENDIAN) }, /// \constant VOID - void value type, may be used only as pointer target type. { MP_OBJ_NEW_QSTR(MP_QSTR_VOID), MP_OBJ_NEW_SMALL_INT(TYPE2SMALLINT(UINT8, VAL_TYPE_BITS)) }, /// \constant UINT8 - uint8_t value type { MP_OBJ_NEW_QSTR(MP_QSTR_UINT8), MP_OBJ_NEW_SMALL_INT(TYPE2SMALLINT(UINT8, 4)) }, /// \constant INT8 - int8_t value type { MP_OBJ_NEW_QSTR(MP_QSTR_INT8), MP_OBJ_NEW_SMALL_INT(TYPE2SMALLINT(INT8, 4)) }, /// \constant UINT16 - uint16_t value type { MP_OBJ_NEW_QSTR(MP_QSTR_UINT16), MP_OBJ_NEW_SMALL_INT(TYPE2SMALLINT(UINT16, 4)) }, /// \constant INT16 - int16_t value type { MP_OBJ_NEW_QSTR(MP_QSTR_INT16), MP_OBJ_NEW_SMALL_INT(TYPE2SMALLINT(INT16, 4)) }, /// \constant UINT32 - uint32_t value type { MP_OBJ_NEW_QSTR(MP_QSTR_UINT32), MP_OBJ_NEW_SMALL_INT(TYPE2SMALLINT(UINT32, 4)) }, /// \constant INT32 - int32_t value type { MP_OBJ_NEW_QSTR(MP_QSTR_INT32), MP_OBJ_NEW_SMALL_INT(TYPE2SMALLINT(INT32, 4)) }, /// \constant UINT64 - uint64_t value type { MP_OBJ_NEW_QSTR(MP_QSTR_UINT64), MP_OBJ_NEW_SMALL_INT(TYPE2SMALLINT(UINT64, 4)) }, /// \constant INT64 - int64_t value type { MP_OBJ_NEW_QSTR(MP_QSTR_INT64), MP_OBJ_NEW_SMALL_INT(TYPE2SMALLINT(INT64, 4)) }, { MP_OBJ_NEW_QSTR(MP_QSTR_BFUINT8), MP_OBJ_NEW_SMALL_INT(TYPE2SMALLINT(BFUINT8, 4)) }, { MP_OBJ_NEW_QSTR(MP_QSTR_BFINT8), MP_OBJ_NEW_SMALL_INT(TYPE2SMALLINT(BFINT8, 4)) }, { MP_OBJ_NEW_QSTR(MP_QSTR_BFUINT16), MP_OBJ_NEW_SMALL_INT(TYPE2SMALLINT(BFUINT16, 4)) }, { MP_OBJ_NEW_QSTR(MP_QSTR_BFINT16), MP_OBJ_NEW_SMALL_INT(TYPE2SMALLINT(BFINT16, 4)) }, { MP_OBJ_NEW_QSTR(MP_QSTR_BFUINT32), MP_OBJ_NEW_SMALL_INT(TYPE2SMALLINT(BFUINT32, 4)) }, { MP_OBJ_NEW_QSTR(MP_QSTR_BFINT32), MP_OBJ_NEW_SMALL_INT(TYPE2SMALLINT(BFINT32, 4)) }, { MP_OBJ_NEW_QSTR(MP_QSTR_BF_POS), MP_OBJ_NEW_SMALL_INT(17) }, { MP_OBJ_NEW_QSTR(MP_QSTR_BF_LEN), MP_OBJ_NEW_SMALL_INT(22) }, { MP_OBJ_NEW_QSTR(MP_QSTR_PTR), MP_OBJ_NEW_SMALL_INT(TYPE2SMALLINT(PTR, AGG_TYPE_BITS)) }, { MP_OBJ_NEW_QSTR(MP_QSTR_ARRAY), MP_OBJ_NEW_SMALL_INT(TYPE2SMALLINT(ARRAY, AGG_TYPE_BITS)) }, }; STATIC MP_DEFINE_CONST_DICT(mp_module_uctypes_globals, mp_module_uctypes_globals_table); const mp_obj_module_t mp_module_uctypes = { .base = { &mp_type_module }, .name = MP_QSTR_uctypes, .globals = (mp_obj_dict_t*)&mp_module_uctypes_globals, }; #endif