""" MicroPython driver for SD cards using SPI bus. Requires an SPI bus and a CS pin. Provides readblocks and writeblocks methods so the device can be mounted as a filesystem. Example usage on pyboard: import pyb, sdcard, os sd = sdcard.SDCard(pyb.SPI(1), pyb.Pin.board.X5) pyb.mount(sd, '/sd2') os.listdir('/') Example usage on ESP8266: import machine, sdcard, os sd = sdcard.SDCard(machine.SPI(0), machine.Pin(15)) os.umount() os.VfsFat(sd, "") os.listdir() """ from micropython import const import time _CMD_TIMEOUT = const(100) _R1_IDLE_STATE = const(1 << 0) #R1_ERASE_RESET = const(1 << 1) _R1_ILLEGAL_COMMAND = const(1 << 2) #R1_COM_CRC_ERROR = const(1 << 3) #R1_ERASE_SEQUENCE_ERROR = const(1 << 4) #R1_ADDRESS_ERROR = const(1 << 5) #R1_PARAMETER_ERROR = const(1 << 6) _TOKEN_CMD25 = const(0xfc) _TOKEN_STOP_TRAN = const(0xfd) _TOKEN_DATA = const(0xfe) class SDCard: def __init__(self, spi, cs): self.spi = spi self.cs = cs self.cmdbuf = bytearray(6) self.dummybuf = bytearray(512) for i in range(512): self.dummybuf[i] = 0xff self.dummybuf_memoryview = memoryview(self.dummybuf) # initialise the card self.init_card() def init_spi(self, baudrate): try: master = self.spi.MASTER except AttributeError: # on ESP8266 self.spi.init(baudrate=baudrate, phase=0, polarity=0) else: # on pyboard self.spi.init(master, baudrate=baudrate, phase=0, polarity=0) def init_card(self): # init CS pin self.cs.init(self.cs.OUT, value=1) # init SPI bus; use low data rate for initialisation self.init_spi(100000) # clock card at least 100 cycles with cs high for i in range(16): self.spi.write(b'\xff') # CMD0: init card; should return _R1_IDLE_STATE (allow 5 attempts) for _ in range(5): if self.cmd(0, 0, 0x95) == _R1_IDLE_STATE: break else: raise OSError("no SD card") # CMD8: determine card version r = self.cmd(8, 0x01aa, 0x87, 4) if r == _R1_IDLE_STATE: self.init_card_v2() elif r == (_R1_IDLE_STATE | _R1_ILLEGAL_COMMAND): self.init_card_v1() else: raise OSError("couldn't determine SD card version") # get the number of sectors # CMD9: response R2 (R1 byte + 16-byte block read) if self.cmd(9, 0, 0, 0, False) != 0: raise OSError("no response from SD card") csd = bytearray(16) self.readinto(csd) if csd[0] & 0xc0 != 0x40: raise OSError("SD card CSD format not supported") self.sectors = ((csd[8] << 8 | csd[9]) + 1) * 2014 #print('sectors', self.sectors) # CMD16: set block length to 512 bytes if self.cmd(16, 512, 0) != 0: raise OSError("can't set 512 block size") # set to high data rate now that it's initialised self.init_spi(1320000) def init_card_v1(self): for i in range(_CMD_TIMEOUT): self.cmd(55, 0, 0) if self.cmd(41, 0, 0) == 0: self.cdv = 512 #print("[SDCard] v1 card") return raise OSError("timeout waiting for v1 card") def init_card_v2(self): for i in range(_CMD_TIMEOUT): time.sleep_ms(50) self.cmd(58, 0, 0, 4) self.cmd(55, 0, 0) if self.cmd(41, 0x40000000, 0) == 0: self.cmd(58, 0, 0, 4) self.cdv = 1 #print("[SDCard] v2 card") return raise OSError("timeout waiting for v2 card") def cmd(self, cmd, arg, crc, final=0, release=True): self.cs(0) # create and send the command buf = self.cmdbuf buf[0] = 0x40 | cmd buf[1] = arg >> 24 buf[2] = arg >> 16 buf[3] = arg >> 8 buf[4] = arg buf[5] = crc self.spi.write(buf) # wait for the response (response[7] == 0) for i in range(_CMD_TIMEOUT): response = self.spi.read(1, 0xff)[0] if not (response & 0x80): # this could be a big-endian integer that we are getting here for j in range(final): self.spi.write(b'\xff') if release: self.cs(1) self.spi.write(b'\xff') return response # timeout self.cs(1) self.spi.write(b'\xff') return -1 def cmd_nodata(self, cmd): self.spi.write(cmd) self.spi.read(1, 0xff) # ignore stuff byte for _ in range(_CMD_TIMEOUT): if self.spi.read(1, 0xff)[0] == 0xff: self.cs(1) self.spi.write(b'\xff') return 0 # OK self.cs(1) self.spi.write(b'\xff') return 1 # timeout def readinto(self, buf): self.cs(0) # read until start byte (0xff) while self.spi.read(1, 0xff)[0] != 0xfe: pass # read data mv = self.dummybuf_memoryview[:len(buf)] self.spi.write_readinto(mv, buf) # read checksum self.spi.write(b'\xff') self.spi.write(b'\xff') self.cs(1) self.spi.write(b'\xff') def write(self, token, buf): self.cs(0) # send: start of block, data, checksum self.spi.read(1, token) self.spi.write(buf) self.spi.write(b'\xff') self.spi.write(b'\xff') # check the response if (self.spi.read(1, 0xff)[0] & 0x1f) != 0x05: self.cs(1) self.spi.write(b'\xff') return # wait for write to finish while self.spi.read(1, 0xff)[0] == 0: pass self.cs(1) self.spi.write(b'\xff') def write_token(self, token): self.cs(0) self.spi.read(1, token) self.spi.write(b'\xff') # wait for write to finish while self.spi.read(1, 0xff)[0] == 0x00: pass self.cs(1) self.spi.write(b'\xff') def count(self): return self.sectors def readblocks(self, block_num, buf): nblocks, err = divmod(len(buf), 512) assert nblocks and not err, 'Buffer length is invalid' if nblocks == 1: # CMD17: set read address for single block if self.cmd(17, block_num * self.cdv, 0) != 0: return 1 # receive the data self.readinto(buf) else: # CMD18: set read address for multiple blocks if self.cmd(18, block_num * self.cdv, 0) != 0: return 1 offset = 0 mv = memoryview(buf) while nblocks: self.readinto(mv[offset : offset + 512]) offset += 512 nblocks -= 1 return self.cmd_nodata(b'\x0c') # cmd 12 return 0 def writeblocks(self, block_num, buf): nblocks, err = divmod(len(buf), 512) assert nblocks and not err, 'Buffer length is invalid' if nblocks == 1: # CMD24: set write address for single block if self.cmd(24, block_num * self.cdv, 0) != 0: return 1 # send the data self.write(_TOKEN_DATA, buf) else: # CMD25: set write address for first block if self.cmd(25, block_num * self.cdv, 0) != 0: return 1 # send the data offset = 0 mv = memoryview(buf) while nblocks: self.write(_TOKEN_CMD25, mv[offset : offset + 512]) offset += 512 nblocks -= 1 self.write_token(_TOKEN_STOP_TRAN) return 0