/* * This file is part of the Micro Python project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2013, 2014 Damien P. George * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include #include #include #include #include #include "py/mpstate.h" #include "py/emit.h" #include "py/bc0.h" #if !MICROPY_EMIT_CPYTHON #define BYTES_FOR_INT ((BYTES_PER_WORD * 8 + 6) / 7) #define DUMMY_DATA_SIZE (BYTES_FOR_INT) struct _emit_t { pass_kind_t pass : 8; mp_uint_t last_emit_was_return_value : 8; int stack_size; scope_t *scope; mp_uint_t last_source_line_offset; mp_uint_t last_source_line; mp_uint_t max_num_labels; mp_uint_t *label_offsets; mp_uint_t code_info_offset; mp_uint_t code_info_size; mp_uint_t bytecode_offset; mp_uint_t bytecode_size; byte *code_base; // stores both byte code and code info // Accessed as mp_uint_t, so must be aligned as such byte dummy_data[DUMMY_DATA_SIZE]; }; STATIC void emit_bc_rot_two(emit_t *emit); STATIC void emit_bc_rot_three(emit_t *emit); emit_t *emit_bc_new(mp_uint_t max_num_labels) { emit_t *emit = m_new0(emit_t, 1); emit->max_num_labels = max_num_labels; emit->label_offsets = m_new(mp_uint_t, emit->max_num_labels); return emit; } void emit_bc_free(emit_t *emit) { m_del(mp_uint_t, emit->label_offsets, emit->max_num_labels); m_del_obj(emit_t, emit); } STATIC void emit_write_uint(emit_t* emit, byte*(*allocator)(emit_t*, int), mp_uint_t val) { // We store each 7 bits in a separate byte, and that's how many bytes needed byte buf[BYTES_FOR_INT]; byte *p = buf + sizeof(buf); // We encode in little-ending order, but store in big-endian, to help decoding do { *--p = val & 0x7f; val >>= 7; } while (val != 0); byte* c = allocator(emit, buf + sizeof(buf) - p); while (p != buf + sizeof(buf) - 1) { *c++ = *p++ | 0x80; } *c = *p; } // all functions must go through this one to emit code info STATIC byte* emit_get_cur_to_write_code_info(emit_t* emit, int num_bytes_to_write) { //printf("emit %d\n", num_bytes_to_write); if (emit->pass < MP_PASS_EMIT) { emit->code_info_offset += num_bytes_to_write; return emit->dummy_data; } else { assert(emit->code_info_offset + num_bytes_to_write <= emit->code_info_size); byte *c = emit->code_base + emit->code_info_offset; emit->code_info_offset += num_bytes_to_write; return c; } } STATIC void emit_align_code_info_to_machine_word(emit_t* emit) { emit->code_info_offset = (emit->code_info_offset + sizeof(mp_uint_t) - 1) & (~(sizeof(mp_uint_t) - 1)); } STATIC void emit_write_code_info_uint(emit_t* emit, mp_uint_t val) { emit_write_uint(emit, emit_get_cur_to_write_code_info, val); } STATIC void emit_write_code_info_qstr(emit_t* emit, qstr qst) { emit_write_uint(emit, emit_get_cur_to_write_code_info, qst); } #if MICROPY_ENABLE_SOURCE_LINE STATIC void emit_write_code_info_bytes_lines(emit_t* emit, mp_uint_t bytes_to_skip, mp_uint_t lines_to_skip) { assert(bytes_to_skip > 0 || lines_to_skip > 0); //printf(" %d %d\n", bytes_to_skip, lines_to_skip); while (bytes_to_skip > 0 || lines_to_skip > 0) { mp_uint_t b, l; if (lines_to_skip <= 6) { // use 0b0LLBBBBB encoding b = MIN(bytes_to_skip, 0x1f); l = MIN(lines_to_skip, 0x3); *emit_get_cur_to_write_code_info(emit, 1) = b | (l << 5); } else { // use 0b1LLLBBBB 0bLLLLLLLL encoding (l's LSB in second byte) b = MIN(bytes_to_skip, 0xf); l = MIN(lines_to_skip, 0x7ff); byte *ci = emit_get_cur_to_write_code_info(emit, 2); ci[0] = 0x80 | b | ((l >> 4) & 0x70); ci[1] = l; } bytes_to_skip -= b; lines_to_skip -= l; } } #endif // all functions must go through this one to emit byte code STATIC byte* emit_get_cur_to_write_bytecode(emit_t* emit, int num_bytes_to_write) { //printf("emit %d\n", num_bytes_to_write); if (emit->pass < MP_PASS_EMIT) { emit->bytecode_offset += num_bytes_to_write; return emit->dummy_data; } else { assert(emit->bytecode_offset + num_bytes_to_write <= emit->bytecode_size); byte *c = emit->code_base + emit->code_info_size + emit->bytecode_offset; emit->bytecode_offset += num_bytes_to_write; return c; } } STATIC void emit_align_bytecode_to_machine_word(emit_t* emit) { emit->bytecode_offset = (emit->bytecode_offset + sizeof(mp_uint_t) - 1) & (~(sizeof(mp_uint_t) - 1)); } STATIC void emit_write_bytecode_byte(emit_t* emit, byte b1) { byte* c = emit_get_cur_to_write_bytecode(emit, 1); c[0] = b1; } STATIC void emit_write_bytecode_uint(emit_t* emit, mp_uint_t val) { emit_write_uint(emit, emit_get_cur_to_write_bytecode, val); } STATIC void emit_write_bytecode_byte_byte(emit_t* emit, byte b1, byte b2) { assert((b2 & (~0xff)) == 0); byte* c = emit_get_cur_to_write_bytecode(emit, 2); c[0] = b1; c[1] = b2; } // Similar to emit_write_bytecode_uint(), just some extra handling to encode sign STATIC void emit_write_bytecode_byte_int(emit_t* emit, byte b1, mp_int_t num) { emit_write_bytecode_byte(emit, b1); // We store each 7 bits in a separate byte, and that's how many bytes needed byte buf[BYTES_FOR_INT]; byte *p = buf + sizeof(buf); // We encode in little-ending order, but store in big-endian, to help decoding do { *--p = num & 0x7f; num >>= 7; } while (num != 0 && num != -1); // Make sure that highest bit we stored (mask 0x40) matches sign // of the number. If not, store extra byte just to encode sign if (num == -1 && (*p & 0x40) == 0) { *--p = 0x7f; } else if (num == 0 && (*p & 0x40) != 0) { *--p = 0; } byte* c = emit_get_cur_to_write_bytecode(emit, buf + sizeof(buf) - p); while (p != buf + sizeof(buf) - 1) { *c++ = *p++ | 0x80; } *c = *p; } STATIC void emit_write_bytecode_byte_uint(emit_t* emit, byte b, mp_uint_t val) { emit_write_bytecode_byte(emit, b); emit_write_uint(emit, emit_get_cur_to_write_bytecode, val); } STATIC void emit_write_bytecode_prealigned_ptr(emit_t* emit, void *ptr) { mp_uint_t *c = (mp_uint_t*)emit_get_cur_to_write_bytecode(emit, sizeof(mp_uint_t)); // Verify thar c is already uint-aligned assert(c == MP_ALIGN(c, sizeof(mp_uint_t))); *c = (mp_uint_t)ptr; } // aligns the pointer so it is friendly to GC STATIC void emit_write_bytecode_byte_ptr(emit_t* emit, byte b, void *ptr) { emit_write_bytecode_byte(emit, b); emit_align_bytecode_to_machine_word(emit); mp_uint_t *c = (mp_uint_t*)emit_get_cur_to_write_bytecode(emit, sizeof(mp_uint_t)); // Verify thar c is already uint-aligned assert(c == MP_ALIGN(c, sizeof(mp_uint_t))); *c = (mp_uint_t)ptr; } /* currently unused STATIC void emit_write_bytecode_byte_uint_uint(emit_t* emit, byte b, mp_uint_t num1, mp_uint_t num2) { emit_write_bytecode_byte(emit, b); emit_write_bytecode_byte_uint(emit, num1); emit_write_bytecode_byte_uint(emit, num2); } */ STATIC void emit_write_bytecode_byte_qstr(emit_t* emit, byte b, qstr qst) { emit_write_bytecode_byte_uint(emit, b, qst); } // unsigned labels are relative to ip following this instruction, stored as 16 bits STATIC void emit_write_bytecode_byte_unsigned_label(emit_t* emit, byte b1, mp_uint_t label) { mp_uint_t bytecode_offset; if (emit->pass < MP_PASS_EMIT) { bytecode_offset = 0; } else { bytecode_offset = emit->label_offsets[label] - emit->bytecode_offset - 3; } byte *c = emit_get_cur_to_write_bytecode(emit, 3); c[0] = b1; c[1] = bytecode_offset; c[2] = bytecode_offset >> 8; } // signed labels are relative to ip following this instruction, stored as 16 bits, in excess STATIC void emit_write_bytecode_byte_signed_label(emit_t* emit, byte b1, mp_uint_t label) { int bytecode_offset; if (emit->pass < MP_PASS_EMIT) { bytecode_offset = 0; } else { bytecode_offset = emit->label_offsets[label] - emit->bytecode_offset - 3 + 0x8000; } byte* c = emit_get_cur_to_write_bytecode(emit, 3); c[0] = b1; c[1] = bytecode_offset; c[2] = bytecode_offset >> 8; } STATIC void emit_bc_set_native_type(emit_t *emit, mp_uint_t op, mp_uint_t arg1, qstr arg2) { } STATIC void emit_bc_start_pass(emit_t *emit, pass_kind_t pass, scope_t *scope) { emit->pass = pass; emit->stack_size = 0; emit->last_emit_was_return_value = false; emit->scope = scope; emit->last_source_line_offset = 0; emit->last_source_line = 1; if (pass < MP_PASS_EMIT) { memset(emit->label_offsets, -1, emit->max_num_labels * sizeof(mp_uint_t)); } emit->bytecode_offset = 0; emit->code_info_offset = 0; // Write code info size as compressed uint. If we are not in the final pass // then space for this uint is reserved in emit_bc_end_pass. if (pass == MP_PASS_EMIT) { emit_write_code_info_uint(emit, emit->code_info_size); } // write the name and source file of this function emit_write_code_info_qstr(emit, scope->simple_name); emit_write_code_info_qstr(emit, scope->source_file); // bytecode prelude: argument names (needed to resolve positional args passed as keywords) // we store them as full word-sized objects for efficient access in mp_setup_code_state // this is the start of the prelude and is guaranteed to be aligned on a word boundary { for (int i = 0; i < scope->num_pos_args + scope->num_kwonly_args; i++) { emit_write_bytecode_prealigned_ptr(emit, MP_OBJ_NEW_QSTR(scope->id_info[i].qst)); } } // bytecode prelude: local state size and exception stack size { mp_uint_t n_state = scope->num_locals + scope->stack_size; if (n_state == 0) { // Need at least 1 entry in the state, in the case an exception is // propagated through this function, the exception is returned in // the highest slot in the state (fastn[0], see vm.c). n_state = 1; } emit_write_bytecode_uint(emit, n_state); emit_write_bytecode_uint(emit, scope->exc_stack_size); } // bytecode prelude: initialise closed over variables int num_cell = 0; for (int i = 0; i < scope->id_info_len; i++) { id_info_t *id = &scope->id_info[i]; if (id->kind == ID_INFO_KIND_CELL) { num_cell += 1; } } assert(num_cell <= 255); emit_write_bytecode_byte(emit, num_cell); // write number of locals that are cells for (int i = 0; i < scope->id_info_len; i++) { id_info_t *id = &scope->id_info[i]; if (id->kind == ID_INFO_KIND_CELL) { emit_write_bytecode_byte(emit, id->local_num); // write the local which should be converted to a cell } } } STATIC void emit_bc_end_pass(emit_t *emit) { // check stack is back to zero size if (emit->stack_size != 0) { printf("ERROR: stack size not back to zero; got %d\n", emit->stack_size); } *emit_get_cur_to_write_code_info(emit, 1) = 0; // end of line number info if (emit->pass == MP_PASS_CODE_SIZE) { // Need to make sure we have enough room in the code-info block to write // the size of the code-info block. Since the size is written as a // compressed uint, we don't know its size until we write it! Thus, we // take the biggest possible value it could be and write that here. // Then there will be enough room to write the value, and any leftover // space will be absorbed in the alignment at the end of the code-info // block. mp_uint_t max_code_info_size = emit->code_info_offset // current code-info size + BYTES_FOR_INT // maximum space for compressed uint + BYTES_PER_WORD - 1; // maximum space for alignment padding emit_write_code_info_uint(emit, max_code_info_size); // Align code-info so that following bytecode is aligned on a machine word. // We don't need to write anything here, it's just dead space between the // code-info block and the bytecode block that follows it. emit_align_code_info_to_machine_word(emit); // calculate size of total code-info + bytecode, in bytes emit->code_info_size = emit->code_info_offset; emit->bytecode_size = emit->bytecode_offset; emit->code_base = m_new0(byte, emit->code_info_size + emit->bytecode_size); } else if (emit->pass == MP_PASS_EMIT) { mp_emit_glue_assign_bytecode(emit->scope->raw_code, emit->code_base, emit->code_info_size + emit->bytecode_size, emit->scope->num_pos_args, emit->scope->num_kwonly_args, emit->scope->scope_flags); } } STATIC bool emit_bc_last_emit_was_return_value(emit_t *emit) { return emit->last_emit_was_return_value; } STATIC void emit_bc_adjust_stack_size(emit_t *emit, mp_int_t delta) { emit->stack_size += delta; } STATIC void emit_bc_set_source_line(emit_t *emit, mp_uint_t source_line) { //printf("source: line %d -> %d offset %d -> %d\n", emit->last_source_line, source_line, emit->last_source_line_offset, emit->bytecode_offset); #if MICROPY_ENABLE_SOURCE_LINE if (MP_STATE_VM(mp_optimise_value) >= 3) { // If we compile with -O3, don't store line numbers. return; } if (source_line > emit->last_source_line) { mp_uint_t bytes_to_skip = emit->bytecode_offset - emit->last_source_line_offset; mp_uint_t lines_to_skip = source_line - emit->last_source_line; emit_write_code_info_bytes_lines(emit, bytes_to_skip, lines_to_skip); emit->last_source_line_offset = emit->bytecode_offset; emit->last_source_line = source_line; } #endif } STATIC void emit_bc_load_id(emit_t *emit, qstr qst) { emit_common_load_id(emit, &emit_bc_method_table, emit->scope, qst); } STATIC void emit_bc_store_id(emit_t *emit, qstr qst) { emit_common_store_id(emit, &emit_bc_method_table, emit->scope, qst); } STATIC void emit_bc_delete_id(emit_t *emit, qstr qst) { emit_common_delete_id(emit, &emit_bc_method_table, emit->scope, qst); } STATIC void emit_bc_pre(emit_t *emit, mp_int_t stack_size_delta) { assert((mp_int_t)emit->stack_size + stack_size_delta >= 0); emit->stack_size += stack_size_delta; if (emit->stack_size > emit->scope->stack_size) { emit->scope->stack_size = emit->stack_size; } emit->last_emit_was_return_value = false; } STATIC void emit_bc_label_assign(emit_t *emit, mp_uint_t l) { emit_bc_pre(emit, 0); assert(l < emit->max_num_labels); if (emit->pass < MP_PASS_EMIT) { // assign label offset assert(emit->label_offsets[l] == (mp_uint_t)-1); emit->label_offsets[l] = emit->bytecode_offset; } else { // ensure label offset has not changed from MP_PASS_CODE_SIZE to MP_PASS_EMIT //printf("l%d: (at %d vs %d)\n", l, emit->bytecode_offset, emit->label_offsets[l]); assert(emit->label_offsets[l] == emit->bytecode_offset); } } STATIC void emit_bc_import_name(emit_t *emit, qstr qst) { emit_bc_pre(emit, -1); emit_write_bytecode_byte_qstr(emit, MP_BC_IMPORT_NAME, qst); } STATIC void emit_bc_import_from(emit_t *emit, qstr qst) { emit_bc_pre(emit, 1); emit_write_bytecode_byte_qstr(emit, MP_BC_IMPORT_FROM, qst); } STATIC void emit_bc_import_star(emit_t *emit) { emit_bc_pre(emit, -1); emit_write_bytecode_byte(emit, MP_BC_IMPORT_STAR); } STATIC void emit_bc_load_const_tok(emit_t *emit, mp_token_kind_t tok) { emit_bc_pre(emit, 1); switch (tok) { case MP_TOKEN_KW_FALSE: emit_write_bytecode_byte(emit, MP_BC_LOAD_CONST_FALSE); break; case MP_TOKEN_KW_NONE: emit_write_bytecode_byte(emit, MP_BC_LOAD_CONST_NONE); break; case MP_TOKEN_KW_TRUE: emit_write_bytecode_byte(emit, MP_BC_LOAD_CONST_TRUE); break; no_other_choice: case MP_TOKEN_ELLIPSIS: emit_write_bytecode_byte(emit, MP_BC_LOAD_CONST_ELLIPSIS); break; default: assert(0); goto no_other_choice; // to help flow control analysis } } STATIC void emit_bc_load_const_small_int(emit_t *emit, mp_int_t arg) { emit_bc_pre(emit, 1); if (-16 <= arg && arg <= 47) { emit_write_bytecode_byte(emit, MP_BC_LOAD_CONST_SMALL_INT_MULTI + 16 + arg); } else { emit_write_bytecode_byte_int(emit, MP_BC_LOAD_CONST_SMALL_INT, arg); } } STATIC void emit_bc_load_const_int(emit_t *emit, qstr qst) { emit_bc_pre(emit, 1); emit_write_bytecode_byte_qstr(emit, MP_BC_LOAD_CONST_INT, qst); } STATIC void emit_bc_load_const_dec(emit_t *emit, qstr qst) { emit_bc_pre(emit, 1); emit_write_bytecode_byte_qstr(emit, MP_BC_LOAD_CONST_DEC, qst); } STATIC void emit_bc_load_const_str(emit_t *emit, qstr qst, bool bytes) { emit_bc_pre(emit, 1); if (bytes) { emit_write_bytecode_byte_qstr(emit, MP_BC_LOAD_CONST_BYTES, qst); } else { emit_write_bytecode_byte_qstr(emit, MP_BC_LOAD_CONST_STRING, qst); } } STATIC void emit_bc_load_const_obj(emit_t *emit, void *obj) { emit_bc_pre(emit, 1); emit_write_bytecode_byte_ptr(emit, MP_BC_LOAD_CONST_OBJ, obj); } STATIC void emit_bc_load_null(emit_t *emit) { emit_bc_pre(emit, 1); emit_write_bytecode_byte(emit, MP_BC_LOAD_NULL); }; STATIC void emit_bc_load_fast(emit_t *emit, qstr qst, mp_uint_t local_num) { assert(local_num >= 0); emit_bc_pre(emit, 1); if (local_num <= 15) { emit_write_bytecode_byte(emit, MP_BC_LOAD_FAST_MULTI + local_num); } else { emit_write_bytecode_byte_uint(emit, MP_BC_LOAD_FAST_N, local_num); } } STATIC void emit_bc_load_deref(emit_t *emit, qstr qst, mp_uint_t local_num) { emit_bc_pre(emit, 1); emit_write_bytecode_byte_uint(emit, MP_BC_LOAD_DEREF, local_num); } STATIC void emit_bc_load_name(emit_t *emit, qstr qst) { emit_bc_pre(emit, 1); emit_write_bytecode_byte_qstr(emit, MP_BC_LOAD_NAME, qst); if (MICROPY_OPT_CACHE_MAP_LOOKUP_IN_BYTECODE) { emit_write_bytecode_byte(emit, 0); } } STATIC void emit_bc_load_global(emit_t *emit, qstr qst) { emit_bc_pre(emit, 1); emit_write_bytecode_byte_qstr(emit, MP_BC_LOAD_GLOBAL, qst); if (MICROPY_OPT_CACHE_MAP_LOOKUP_IN_BYTECODE) { emit_write_bytecode_byte(emit, 0); } } STATIC void emit_bc_load_attr(emit_t *emit, qstr qst) { emit_bc_pre(emit, 0); emit_write_bytecode_byte_qstr(emit, MP_BC_LOAD_ATTR, qst); if (MICROPY_OPT_CACHE_MAP_LOOKUP_IN_BYTECODE) { emit_write_bytecode_byte(emit, 0); } } STATIC void emit_bc_load_method(emit_t *emit, qstr qst) { emit_bc_pre(emit, 1); emit_write_bytecode_byte_qstr(emit, MP_BC_LOAD_METHOD, qst); } STATIC void emit_bc_load_build_class(emit_t *emit) { emit_bc_pre(emit, 1); emit_write_bytecode_byte(emit, MP_BC_LOAD_BUILD_CLASS); } STATIC void emit_bc_load_subscr(emit_t *emit) { emit_bc_pre(emit, -1); emit_write_bytecode_byte(emit, MP_BC_LOAD_SUBSCR); } STATIC void emit_bc_store_fast(emit_t *emit, qstr qst, mp_uint_t local_num) { assert(local_num >= 0); emit_bc_pre(emit, -1); if (local_num <= 15) { emit_write_bytecode_byte(emit, MP_BC_STORE_FAST_MULTI + local_num); } else { emit_write_bytecode_byte_uint(emit, MP_BC_STORE_FAST_N, local_num); } } STATIC void emit_bc_store_deref(emit_t *emit, qstr qst, mp_uint_t local_num) { emit_bc_pre(emit, -1); emit_write_bytecode_byte_uint(emit, MP_BC_STORE_DEREF, local_num); } STATIC void emit_bc_store_name(emit_t *emit, qstr qst) { emit_bc_pre(emit, -1); emit_write_bytecode_byte_qstr(emit, MP_BC_STORE_NAME, qst); } STATIC void emit_bc_store_global(emit_t *emit, qstr qst) { emit_bc_pre(emit, -1); emit_write_bytecode_byte_qstr(emit, MP_BC_STORE_GLOBAL, qst); } STATIC void emit_bc_store_attr(emit_t *emit, qstr qst) { emit_bc_pre(emit, -2); emit_write_bytecode_byte_qstr(emit, MP_BC_STORE_ATTR, qst); if (MICROPY_OPT_CACHE_MAP_LOOKUP_IN_BYTECODE) { emit_write_bytecode_byte(emit, 0); } } STATIC void emit_bc_store_subscr(emit_t *emit) { emit_bc_pre(emit, -3); emit_write_bytecode_byte(emit, MP_BC_STORE_SUBSCR); } STATIC void emit_bc_delete_fast(emit_t *emit, qstr qst, mp_uint_t local_num) { emit_write_bytecode_byte_uint(emit, MP_BC_DELETE_FAST, local_num); } STATIC void emit_bc_delete_deref(emit_t *emit, qstr qst, mp_uint_t local_num) { emit_write_bytecode_byte_uint(emit, MP_BC_DELETE_DEREF, local_num); } STATIC void emit_bc_delete_name(emit_t *emit, qstr qst) { emit_bc_pre(emit, 0); emit_write_bytecode_byte_qstr(emit, MP_BC_DELETE_NAME, qst); } STATIC void emit_bc_delete_global(emit_t *emit, qstr qst) { emit_bc_pre(emit, 0); emit_write_bytecode_byte_qstr(emit, MP_BC_DELETE_GLOBAL, qst); } STATIC void emit_bc_delete_attr(emit_t *emit, qstr qst) { emit_bc_load_null(emit); emit_bc_rot_two(emit); emit_bc_store_attr(emit, qst); } STATIC void emit_bc_delete_subscr(emit_t *emit) { emit_bc_load_null(emit); emit_bc_rot_three(emit); emit_bc_store_subscr(emit); } STATIC void emit_bc_dup_top(emit_t *emit) { emit_bc_pre(emit, 1); emit_write_bytecode_byte(emit, MP_BC_DUP_TOP); } STATIC void emit_bc_dup_top_two(emit_t *emit) { emit_bc_pre(emit, 2); emit_write_bytecode_byte(emit, MP_BC_DUP_TOP_TWO); } STATIC void emit_bc_pop_top(emit_t *emit) { emit_bc_pre(emit, -1); emit_write_bytecode_byte(emit, MP_BC_POP_TOP); } STATIC void emit_bc_rot_two(emit_t *emit) { emit_bc_pre(emit, 0); emit_write_bytecode_byte(emit, MP_BC_ROT_TWO); } STATIC void emit_bc_rot_three(emit_t *emit) { emit_bc_pre(emit, 0); emit_write_bytecode_byte(emit, MP_BC_ROT_THREE); } STATIC void emit_bc_jump(emit_t *emit, mp_uint_t label) { emit_bc_pre(emit, 0); emit_write_bytecode_byte_signed_label(emit, MP_BC_JUMP, label); } STATIC void emit_bc_pop_jump_if_true(emit_t *emit, mp_uint_t label) { emit_bc_pre(emit, -1); emit_write_bytecode_byte_signed_label(emit, MP_BC_POP_JUMP_IF_TRUE, label); } STATIC void emit_bc_pop_jump_if_false(emit_t *emit, mp_uint_t label) { emit_bc_pre(emit, -1); emit_write_bytecode_byte_signed_label(emit, MP_BC_POP_JUMP_IF_FALSE, label); } STATIC void emit_bc_jump_if_true_or_pop(emit_t *emit, mp_uint_t label) { emit_bc_pre(emit, -1); emit_write_bytecode_byte_signed_label(emit, MP_BC_JUMP_IF_TRUE_OR_POP, label); } STATIC void emit_bc_jump_if_false_or_pop(emit_t *emit, mp_uint_t label) { emit_bc_pre(emit, -1); emit_write_bytecode_byte_signed_label(emit, MP_BC_JUMP_IF_FALSE_OR_POP, label); } STATIC void emit_bc_unwind_jump(emit_t *emit, mp_uint_t label, mp_uint_t except_depth) { if (except_depth == 0) { emit_bc_pre(emit, 0); if (label & MP_EMIT_BREAK_FROM_FOR) { // need to pop the iterator if we are breaking out of a for loop emit_write_bytecode_byte(emit, MP_BC_POP_TOP); } emit_write_bytecode_byte_signed_label(emit, MP_BC_JUMP, label & ~MP_EMIT_BREAK_FROM_FOR); } else { emit_write_bytecode_byte_signed_label(emit, MP_BC_UNWIND_JUMP, label & ~MP_EMIT_BREAK_FROM_FOR); emit_write_bytecode_byte(emit, ((label & MP_EMIT_BREAK_FROM_FOR) ? 0x80 : 0) | except_depth); } } STATIC void emit_bc_setup_with(emit_t *emit, mp_uint_t label) { emit_bc_pre(emit, 7); emit_write_bytecode_byte_unsigned_label(emit, MP_BC_SETUP_WITH, label); } STATIC void emit_bc_with_cleanup(emit_t *emit) { emit_bc_pre(emit, -7); emit_write_bytecode_byte(emit, MP_BC_WITH_CLEANUP); } STATIC void emit_bc_setup_except(emit_t *emit, mp_uint_t label) { emit_bc_pre(emit, 0); emit_write_bytecode_byte_unsigned_label(emit, MP_BC_SETUP_EXCEPT, label); } STATIC void emit_bc_setup_finally(emit_t *emit, mp_uint_t label) { emit_bc_pre(emit, 0); emit_write_bytecode_byte_unsigned_label(emit, MP_BC_SETUP_FINALLY, label); } STATIC void emit_bc_end_finally(emit_t *emit) { emit_bc_pre(emit, -1); emit_write_bytecode_byte(emit, MP_BC_END_FINALLY); } STATIC void emit_bc_get_iter(emit_t *emit) { emit_bc_pre(emit, 0); emit_write_bytecode_byte(emit, MP_BC_GET_ITER); } STATIC void emit_bc_for_iter(emit_t *emit, mp_uint_t label) { emit_bc_pre(emit, 1); emit_write_bytecode_byte_unsigned_label(emit, MP_BC_FOR_ITER, label); } STATIC void emit_bc_for_iter_end(emit_t *emit) { emit_bc_pre(emit, -1); } STATIC void emit_bc_pop_block(emit_t *emit) { emit_bc_pre(emit, 0); emit_write_bytecode_byte(emit, MP_BC_POP_BLOCK); } STATIC void emit_bc_pop_except(emit_t *emit) { emit_bc_pre(emit, 0); emit_write_bytecode_byte(emit, MP_BC_POP_EXCEPT); } STATIC void emit_bc_unary_op(emit_t *emit, mp_unary_op_t op) { if (op == MP_UNARY_OP_NOT) { emit_bc_pre(emit, 0); emit_write_bytecode_byte(emit, MP_BC_UNARY_OP_MULTI + MP_UNARY_OP_BOOL); emit_bc_pre(emit, 0); emit_write_bytecode_byte(emit, MP_BC_NOT); } else { emit_bc_pre(emit, 0); emit_write_bytecode_byte(emit, MP_BC_UNARY_OP_MULTI + op); } } STATIC void emit_bc_binary_op(emit_t *emit, mp_binary_op_t op) { bool invert = false; if (op == MP_BINARY_OP_NOT_IN) { invert = true; op = MP_BINARY_OP_IN; } else if (op == MP_BINARY_OP_IS_NOT) { invert = true; op = MP_BINARY_OP_IS; } emit_bc_pre(emit, -1); emit_write_bytecode_byte(emit, MP_BC_BINARY_OP_MULTI + op); if (invert) { emit_bc_pre(emit, 0); emit_write_bytecode_byte(emit, MP_BC_NOT); } } STATIC void emit_bc_build_tuple(emit_t *emit, mp_uint_t n_args) { emit_bc_pre(emit, 1 - n_args); emit_write_bytecode_byte_uint(emit, MP_BC_BUILD_TUPLE, n_args); } STATIC void emit_bc_build_list(emit_t *emit, mp_uint_t n_args) { emit_bc_pre(emit, 1 - n_args); emit_write_bytecode_byte_uint(emit, MP_BC_BUILD_LIST, n_args); } STATIC void emit_bc_list_append(emit_t *emit, mp_uint_t list_stack_index) { emit_bc_pre(emit, -1); emit_write_bytecode_byte_uint(emit, MP_BC_LIST_APPEND, list_stack_index); } STATIC void emit_bc_build_map(emit_t *emit, mp_uint_t n_args) { emit_bc_pre(emit, 1); emit_write_bytecode_byte_uint(emit, MP_BC_BUILD_MAP, n_args); } STATIC void emit_bc_store_map(emit_t *emit) { emit_bc_pre(emit, -2); emit_write_bytecode_byte(emit, MP_BC_STORE_MAP); } STATIC void emit_bc_map_add(emit_t *emit, mp_uint_t map_stack_index) { emit_bc_pre(emit, -2); emit_write_bytecode_byte_uint(emit, MP_BC_MAP_ADD, map_stack_index); } #if MICROPY_PY_BUILTINS_SET STATIC void emit_bc_build_set(emit_t *emit, mp_uint_t n_args) { emit_bc_pre(emit, 1 - n_args); emit_write_bytecode_byte_uint(emit, MP_BC_BUILD_SET, n_args); } STATIC void emit_bc_set_add(emit_t *emit, mp_uint_t set_stack_index) { emit_bc_pre(emit, -1); emit_write_bytecode_byte_uint(emit, MP_BC_SET_ADD, set_stack_index); } #endif #if MICROPY_PY_BUILTINS_SLICE STATIC void emit_bc_build_slice(emit_t *emit, mp_uint_t n_args) { emit_bc_pre(emit, 1 - n_args); emit_write_bytecode_byte_uint(emit, MP_BC_BUILD_SLICE, n_args); } #endif STATIC void emit_bc_unpack_sequence(emit_t *emit, mp_uint_t n_args) { emit_bc_pre(emit, -1 + n_args); emit_write_bytecode_byte_uint(emit, MP_BC_UNPACK_SEQUENCE, n_args); } STATIC void emit_bc_unpack_ex(emit_t *emit, mp_uint_t n_left, mp_uint_t n_right) { emit_bc_pre(emit, -1 + n_left + n_right + 1); emit_write_bytecode_byte_uint(emit, MP_BC_UNPACK_EX, n_left | (n_right << 8)); } STATIC void emit_bc_make_function(emit_t *emit, scope_t *scope, mp_uint_t n_pos_defaults, mp_uint_t n_kw_defaults) { if (n_pos_defaults == 0 && n_kw_defaults == 0) { emit_bc_pre(emit, 1); emit_write_bytecode_byte_ptr(emit, MP_BC_MAKE_FUNCTION, scope->raw_code); } else { emit_bc_pre(emit, -1); emit_write_bytecode_byte_ptr(emit, MP_BC_MAKE_FUNCTION_DEFARGS, scope->raw_code); } } STATIC void emit_bc_make_closure(emit_t *emit, scope_t *scope, mp_uint_t n_closed_over, mp_uint_t n_pos_defaults, mp_uint_t n_kw_defaults) { if (n_pos_defaults == 0 && n_kw_defaults == 0) { emit_bc_pre(emit, -n_closed_over + 1); emit_write_bytecode_byte_ptr(emit, MP_BC_MAKE_CLOSURE, scope->raw_code); emit_write_bytecode_byte(emit, n_closed_over); } else { assert(n_closed_over <= 255); emit_bc_pre(emit, -2 - n_closed_over + 1); emit_write_bytecode_byte_ptr(emit, MP_BC_MAKE_CLOSURE_DEFARGS, scope->raw_code); emit_write_bytecode_byte(emit, n_closed_over); } } STATIC void emit_bc_call_function_method_helper(emit_t *emit, mp_int_t stack_adj, mp_uint_t bytecode_base, mp_uint_t n_positional, mp_uint_t n_keyword, mp_uint_t star_flags) { if (star_flags) { if (!(star_flags & MP_EMIT_STAR_FLAG_SINGLE)) { // load dummy entry for non-existent pos_seq emit_bc_load_null(emit); emit_bc_rot_two(emit); } else if (!(star_flags & MP_EMIT_STAR_FLAG_DOUBLE)) { // load dummy entry for non-existent kw_dict emit_bc_load_null(emit); } emit_bc_pre(emit, stack_adj - (mp_int_t)n_positional - 2 * (mp_int_t)n_keyword - 2); emit_write_bytecode_byte_uint(emit, bytecode_base + 1, (n_keyword << 8) | n_positional); // TODO make it 2 separate uints? } else { emit_bc_pre(emit, stack_adj - (mp_int_t)n_positional - 2 * (mp_int_t)n_keyword); emit_write_bytecode_byte_uint(emit, bytecode_base, (n_keyword << 8) | n_positional); // TODO make it 2 separate uints? } } STATIC void emit_bc_call_function(emit_t *emit, mp_uint_t n_positional, mp_uint_t n_keyword, mp_uint_t star_flags) { emit_bc_call_function_method_helper(emit, 0, MP_BC_CALL_FUNCTION, n_positional, n_keyword, star_flags); } STATIC void emit_bc_call_method(emit_t *emit, mp_uint_t n_positional, mp_uint_t n_keyword, mp_uint_t star_flags) { emit_bc_call_function_method_helper(emit, -1, MP_BC_CALL_METHOD, n_positional, n_keyword, star_flags); } STATIC void emit_bc_return_value(emit_t *emit) { emit_bc_pre(emit, -1); emit->last_emit_was_return_value = true; emit_write_bytecode_byte(emit, MP_BC_RETURN_VALUE); } STATIC void emit_bc_raise_varargs(emit_t *emit, mp_uint_t n_args) { assert(0 <= n_args && n_args <= 2); emit_bc_pre(emit, -n_args); emit_write_bytecode_byte_byte(emit, MP_BC_RAISE_VARARGS, n_args); } STATIC void emit_bc_yield_value(emit_t *emit) { emit_bc_pre(emit, 0); emit->scope->scope_flags |= MP_SCOPE_FLAG_GENERATOR; emit_write_bytecode_byte(emit, MP_BC_YIELD_VALUE); } STATIC void emit_bc_yield_from(emit_t *emit) { emit_bc_pre(emit, -1); emit->scope->scope_flags |= MP_SCOPE_FLAG_GENERATOR; emit_write_bytecode_byte(emit, MP_BC_YIELD_FROM); } STATIC void emit_bc_start_except_handler(emit_t *emit) { emit_bc_adjust_stack_size(emit, 6); // stack adjust for the 3 exception items, +3 for possible UNWIND_JUMP state } STATIC void emit_bc_end_except_handler(emit_t *emit) { emit_bc_adjust_stack_size(emit, -5); // stack adjust } const emit_method_table_t emit_bc_method_table = { emit_bc_set_native_type, emit_bc_start_pass, emit_bc_end_pass, emit_bc_last_emit_was_return_value, emit_bc_adjust_stack_size, emit_bc_set_source_line, emit_bc_load_id, emit_bc_store_id, emit_bc_delete_id, emit_bc_label_assign, emit_bc_import_name, emit_bc_import_from, emit_bc_import_star, emit_bc_load_const_tok, emit_bc_load_const_small_int, emit_bc_load_const_int, emit_bc_load_const_dec, emit_bc_load_const_str, emit_bc_load_const_obj, emit_bc_load_null, emit_bc_load_fast, emit_bc_load_deref, emit_bc_load_name, emit_bc_load_global, emit_bc_load_attr, emit_bc_load_method, emit_bc_load_build_class, emit_bc_load_subscr, emit_bc_store_fast, emit_bc_store_deref, emit_bc_store_name, emit_bc_store_global, emit_bc_store_attr, emit_bc_store_subscr, emit_bc_delete_fast, emit_bc_delete_deref, emit_bc_delete_name, emit_bc_delete_global, emit_bc_delete_attr, emit_bc_delete_subscr, emit_bc_dup_top, emit_bc_dup_top_two, emit_bc_pop_top, emit_bc_rot_two, emit_bc_rot_three, emit_bc_jump, emit_bc_pop_jump_if_true, emit_bc_pop_jump_if_false, emit_bc_jump_if_true_or_pop, emit_bc_jump_if_false_or_pop, emit_bc_unwind_jump, emit_bc_unwind_jump, emit_bc_setup_with, emit_bc_with_cleanup, emit_bc_setup_except, emit_bc_setup_finally, emit_bc_end_finally, emit_bc_get_iter, emit_bc_for_iter, emit_bc_for_iter_end, emit_bc_pop_block, emit_bc_pop_except, emit_bc_unary_op, emit_bc_binary_op, emit_bc_build_tuple, emit_bc_build_list, emit_bc_list_append, emit_bc_build_map, emit_bc_store_map, emit_bc_map_add, #if MICROPY_PY_BUILTINS_SET emit_bc_build_set, emit_bc_set_add, #endif #if MICROPY_PY_BUILTINS_SLICE emit_bc_build_slice, #endif emit_bc_unpack_sequence, emit_bc_unpack_ex, emit_bc_make_function, emit_bc_make_closure, emit_bc_call_function, emit_bc_call_method, emit_bc_return_value, emit_bc_raise_varargs, emit_bc_yield_value, emit_bc_yield_from, emit_bc_start_except_handler, emit_bc_end_except_handler, }; #endif // !MICROPY_EMIT_CPYTHON