/* * This file is part of the MicroPython project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2013, 2014 Damien P. George * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include #include #include #include "Arduino.h" #include "py/obj.h" #include "py/gc.h" #include "py/mphal.h" #include "lib/utils/pyexec.h" #include "gccollect.h" #include "irq.h" #include "systick.h" #include "led.h" #include "pin.h" #include "timer.h" #include "extint.h" #include "usrsw.h" #include "rng.h" //#include "rtc.h" //#include "i2c.h" //#include "spi.h" #include "uart.h" #include "adc.h" #include "storage.h" #include "sdcard.h" #include "accel.h" #include "servo.h" #include "dac.h" #include "usb.h" #include "portmodules.h" /// \module pyb - functions related to the pyboard /// /// The `pyb` module contains specific functions related to the pyboard. /// \function bootloader() /// Activate the bootloader without BOOT* pins. STATIC mp_obj_t pyb_bootloader(void) { printf("bootloader command not current supported\n"); return mp_const_none; } STATIC MP_DEFINE_CONST_FUN_OBJ_0(pyb_bootloader_obj, pyb_bootloader); /// \function info([dump_alloc_table]) /// Print out lots of information about the board. STATIC mp_obj_t pyb_info(uint n_args, const mp_obj_t *args) { // get and print unique id; 96 bits { byte *id = (byte*)0x40048058; printf("ID=%02x%02x%02x%02x:%02x%02x%02x%02x:%02x%02x%02x%02x\n", id[0], id[1], id[2], id[3], id[4], id[5], id[6], id[7], id[8], id[9], id[10], id[11]); } // get and print clock speeds printf("CPU=%u\nBUS=%u\nMEM=%u\n", F_CPU, F_BUS, F_MEM); // to print info about memory { printf("_etext=%p\n", &_etext); printf("_sidata=%p\n", &_sidata); printf("_sdata=%p\n", &_sdata); printf("_edata=%p\n", &_edata); printf("_sbss=%p\n", &_sbss); printf("_ebss=%p\n", &_ebss); printf("_estack=%p\n", &_estack); printf("_ram_start=%p\n", &_ram_start); printf("_heap_start=%p\n", &_heap_start); printf("_heap_end=%p\n", &_heap_end); printf("_ram_end=%p\n", &_ram_end); } // qstr info { uint n_pool, n_qstr, n_str_data_bytes, n_total_bytes; qstr_pool_info(&n_pool, &n_qstr, &n_str_data_bytes, &n_total_bytes); printf("qstr:\n n_pool=%u\n n_qstr=%u\n n_str_data_bytes=%u\n n_total_bytes=%u\n", n_pool, n_qstr, n_str_data_bytes, n_total_bytes); } // GC info { gc_info_t info; gc_info(&info); printf("GC:\n"); printf(" " UINT_FMT " total\n", info.total); printf(" " UINT_FMT " : " UINT_FMT "\n", info.used, info.free); printf(" 1=" UINT_FMT " 2=" UINT_FMT " m=" UINT_FMT "\n", info.num_1block, info.num_2block, info.max_block); } if (n_args == 1) { // arg given means dump gc allocation table gc_dump_alloc_table(); } return mp_const_none; } STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pyb_info_obj, 0, 1, pyb_info); /// \function unique_id() /// Returns a string of 12 bytes (96 bits), which is the unique ID for the MCU. STATIC mp_obj_t pyb_unique_id(void) { byte *id = (byte*)0x40048058; return mp_obj_new_bytes(id, 12); } STATIC MP_DEFINE_CONST_FUN_OBJ_0(pyb_unique_id_obj, pyb_unique_id); /// \function freq() /// Return a tuple of clock frequencies: (SYSCLK, HCLK, PCLK1, PCLK2). // TODO should also be able to set frequency via this function STATIC mp_obj_t pyb_freq(void) { mp_obj_t tuple[3] = { mp_obj_new_int(F_CPU), mp_obj_new_int(F_BUS), mp_obj_new_int(F_MEM), }; return mp_obj_new_tuple(3, tuple); } STATIC MP_DEFINE_CONST_FUN_OBJ_0(pyb_freq_obj, pyb_freq); /// \function sync() /// Sync all file systems. STATIC mp_obj_t pyb_sync(void) { printf("sync not currently implemented\n"); return mp_const_none; } STATIC MP_DEFINE_CONST_FUN_OBJ_0(pyb_sync_obj, pyb_sync); /// \function millis() /// Returns the number of milliseconds since the board was last reset. /// /// The result is always a MicroPython smallint (31-bit signed number), so /// after 2^30 milliseconds (about 12.4 days) this will start to return /// negative numbers. STATIC mp_obj_t pyb_millis(void) { // We want to "cast" the 32 bit unsigned into a small-int. This means // copying the MSB down 1 bit (extending the sign down), which is // equivalent to just using the MP_OBJ_NEW_SMALL_INT macro. return MP_OBJ_NEW_SMALL_INT(mp_hal_ticks_ms()); } STATIC MP_DEFINE_CONST_FUN_OBJ_0(pyb_millis_obj, pyb_millis); /// \function elapsed_millis(start) /// Returns the number of milliseconds which have elapsed since `start`. /// /// This function takes care of counter wrap, and always returns a positive /// number. This means it can be used to measure periods upto about 12.4 days. /// /// Example: /// start = pyb.millis() /// while pyb.elapsed_millis(start) < 1000: /// # Perform some operation STATIC mp_obj_t pyb_elapsed_millis(mp_obj_t start) { uint32_t startMillis = mp_obj_get_int(start); uint32_t currMillis = mp_hal_ticks_ms(); return MP_OBJ_NEW_SMALL_INT((currMillis - startMillis) & 0x3fffffff); } STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_elapsed_millis_obj, pyb_elapsed_millis); /// \function micros() /// Returns the number of microseconds since the board was last reset. /// /// The result is always a MicroPython smallint (31-bit signed number), so /// after 2^30 microseconds (about 17.8 minutes) this will start to return /// negative numbers. STATIC mp_obj_t pyb_micros(void) { // We want to "cast" the 32 bit unsigned into a small-int. This means // copying the MSB down 1 bit (extending the sign down), which is // equivalent to just using the MP_OBJ_NEW_SMALL_INT macro. return MP_OBJ_NEW_SMALL_INT(micros()); } STATIC MP_DEFINE_CONST_FUN_OBJ_0(pyb_micros_obj, pyb_micros); /// \function elapsed_micros(start) /// Returns the number of microseconds which have elapsed since `start`. /// /// This function takes care of counter wrap, and always returns a positive /// number. This means it can be used to measure periods upto about 17.8 minutes. /// /// Example: /// start = pyb.micros() /// while pyb.elapsed_micros(start) < 1000: /// # Perform some operation STATIC mp_obj_t pyb_elapsed_micros(mp_obj_t start) { uint32_t startMicros = mp_obj_get_int(start); uint32_t currMicros = micros(); return MP_OBJ_NEW_SMALL_INT((currMicros - startMicros) & 0x3fffffff); } STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_elapsed_micros_obj, pyb_elapsed_micros); /// \function delay(ms) /// Delay for the given number of milliseconds. STATIC mp_obj_t pyb_delay(mp_obj_t ms_in) { mp_int_t ms = mp_obj_get_int(ms_in); if (ms >= 0) { mp_hal_delay_ms(ms); } return mp_const_none; } STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_delay_obj, pyb_delay); /// \function udelay(us) /// Delay for the given number of microseconds. STATIC mp_obj_t pyb_udelay(mp_obj_t usec_in) { mp_int_t usec = mp_obj_get_int(usec_in); delayMicroseconds(usec); return mp_const_none; } STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_udelay_obj, pyb_udelay); STATIC mp_obj_t pyb_stop(void) { printf("stop not currently implemented\n"); return mp_const_none; } STATIC MP_DEFINE_CONST_FUN_OBJ_0(pyb_stop_obj, pyb_stop); STATIC mp_obj_t pyb_standby(void) { printf("standby not currently implemented\n"); return mp_const_none; } STATIC MP_DEFINE_CONST_FUN_OBJ_0(pyb_standby_obj, pyb_standby); /// \function have_cdc() /// Return True if USB is connected as a serial device, False otherwise. STATIC mp_obj_t pyb_have_cdc(void ) { return mp_obj_new_bool(usb_vcp_is_connected()); } STATIC MP_DEFINE_CONST_FUN_OBJ_0(pyb_have_cdc_obj, pyb_have_cdc); /// \function hid((buttons, x, y, z)) /// Takes a 4-tuple (or list) and sends it to the USB host (the PC) to /// signal a HID mouse-motion event. STATIC mp_obj_t pyb_hid_send_report(mp_obj_t arg) { #if 1 printf("hid_send_report not currently implemented\n"); #else mp_obj_t *items; mp_obj_get_array_fixed_n(arg, 4, &items); uint8_t data[4]; data[0] = mp_obj_get_int(items[0]); data[1] = mp_obj_get_int(items[1]); data[2] = mp_obj_get_int(items[2]); data[3] = mp_obj_get_int(items[3]); usb_hid_send_report(data); #endif return mp_const_none; } STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_hid_send_report_obj, pyb_hid_send_report); MP_DECLARE_CONST_FUN_OBJ_1(pyb_source_dir_obj); // defined in main.c MP_DECLARE_CONST_FUN_OBJ_1(pyb_main_obj); // defined in main.c MP_DECLARE_CONST_FUN_OBJ_1(pyb_usb_mode_obj); // defined in main.c STATIC const mp_rom_map_elem_t pyb_module_globals_table[] = { { MP_ROM_QSTR(MP_QSTR___name__), MP_ROM_QSTR(MP_QSTR_pyb) }, { MP_ROM_QSTR(MP_QSTR_bootloader), MP_ROM_PTR(&pyb_bootloader_obj) }, { MP_ROM_QSTR(MP_QSTR_info), MP_ROM_PTR(&pyb_info_obj) }, { MP_ROM_QSTR(MP_QSTR_unique_id), MP_ROM_PTR(&pyb_unique_id_obj) }, { MP_ROM_QSTR(MP_QSTR_freq), MP_ROM_PTR(&pyb_freq_obj) }, { MP_ROM_QSTR(MP_QSTR_repl_info), MP_ROM_PTR(&pyb_set_repl_info_obj) }, { MP_ROM_QSTR(MP_QSTR_wfi), MP_ROM_PTR(&pyb_wfi_obj) }, { MP_ROM_QSTR(MP_QSTR_disable_irq), MP_ROM_PTR(&pyb_disable_irq_obj) }, { MP_ROM_QSTR(MP_QSTR_enable_irq), MP_ROM_PTR(&pyb_enable_irq_obj) }, { MP_ROM_QSTR(MP_QSTR_stop), MP_ROM_PTR(&pyb_stop_obj) }, { MP_ROM_QSTR(MP_QSTR_standby), MP_ROM_PTR(&pyb_standby_obj) }, { MP_ROM_QSTR(MP_QSTR_source_dir), MP_ROM_PTR(&pyb_source_dir_obj) }, { MP_ROM_QSTR(MP_QSTR_main), MP_ROM_PTR(&pyb_main_obj) }, { MP_ROM_QSTR(MP_QSTR_usb_mode), MP_ROM_PTR(&pyb_usb_mode_obj) }, { MP_ROM_QSTR(MP_QSTR_have_cdc), MP_ROM_PTR(&pyb_have_cdc_obj) }, { MP_ROM_QSTR(MP_QSTR_hid), MP_ROM_PTR(&pyb_hid_send_report_obj) }, { MP_ROM_QSTR(MP_QSTR_millis), MP_ROM_PTR(&pyb_millis_obj) }, { MP_ROM_QSTR(MP_QSTR_elapsed_millis), MP_ROM_PTR(&pyb_elapsed_millis_obj) }, { MP_ROM_QSTR(MP_QSTR_micros), MP_ROM_PTR(&pyb_micros_obj) }, { MP_ROM_QSTR(MP_QSTR_elapsed_micros), MP_ROM_PTR(&pyb_elapsed_micros_obj) }, { MP_ROM_QSTR(MP_QSTR_delay), MP_ROM_PTR(&pyb_delay_obj) }, { MP_ROM_QSTR(MP_QSTR_udelay), MP_ROM_PTR(&pyb_udelay_obj) }, { MP_ROM_QSTR(MP_QSTR_sync), MP_ROM_PTR(&pyb_sync_obj) }, { MP_ROM_QSTR(MP_QSTR_Timer), MP_ROM_PTR(&pyb_timer_type) }, //#if MICROPY_HW_ENABLE_RNG // { MP_ROM_QSTR(MP_QSTR_rng), MP_ROM_PTR(&pyb_rng_get_obj) }, //#endif //#if MICROPY_HW_ENABLE_RTC // { MP_ROM_QSTR(MP_QSTR_RTC), MP_ROM_PTR(&pyb_rtc_type) }, //#endif { MP_ROM_QSTR(MP_QSTR_Pin), MP_ROM_PTR(&pin_type) }, // { MP_ROM_QSTR(MP_QSTR_ExtInt), MP_ROM_PTR(&extint_type) }, #if MICROPY_HW_ENABLE_SERVO { MP_ROM_QSTR(MP_QSTR_pwm), MP_ROM_PTR(&pyb_pwm_set_obj) }, { MP_ROM_QSTR(MP_QSTR_servo), MP_ROM_PTR(&pyb_servo_set_obj) }, { MP_ROM_QSTR(MP_QSTR_Servo), MP_ROM_PTR(&pyb_servo_type) }, #endif #if MICROPY_HW_HAS_SWITCH { MP_ROM_QSTR(MP_QSTR_Switch), MP_ROM_PTR(&pyb_switch_type) }, #endif //#if MICROPY_HW_HAS_SDCARD // { MP_ROM_QSTR(MP_QSTR_SD), MP_ROM_PTR(&pyb_sdcard_obj) }, //#endif { MP_ROM_QSTR(MP_QSTR_LED), MP_ROM_PTR(&pyb_led_type) }, // { MP_ROM_QSTR(MP_QSTR_I2C), MP_ROM_PTR(&pyb_i2c_type) }, // { MP_ROM_QSTR(MP_QSTR_SPI), MP_ROM_PTR(&pyb_spi_type) }, { MP_ROM_QSTR(MP_QSTR_UART), MP_ROM_PTR(&pyb_uart_type) }, // { MP_ROM_QSTR(MP_QSTR_ADC), MP_ROM_PTR(&pyb_adc_type) }, // { MP_ROM_QSTR(MP_QSTR_ADCAll), MP_ROM_PTR(&pyb_adc_all_type) }, //#if MICROPY_HW_ENABLE_DAC // { MP_ROM_QSTR(MP_QSTR_DAC), MP_ROM_PTR(&pyb_dac_type) }, //#endif //#if MICROPY_HW_HAS_MMA7660 // { MP_ROM_QSTR(MP_QSTR_Accel), MP_ROM_PTR(&pyb_accel_type) }, //#endif }; STATIC MP_DEFINE_CONST_DICT(pyb_module_globals, pyb_module_globals_table); const mp_obj_module_t pyb_module = { .base = { &mp_type_module }, .globals = (mp_obj_dict_t*)&pyb_module_globals, };