/* * This file is part of the MicroPython project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2013, 2014 Damien P. George * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "py/mpconfig.h" #include "py/misc.h" #include "py/mphal.h" #include "flash.h" #if defined(STM32G0) // These are not defined on the CMSIS header #define FLASH_FLAG_SR_ERRORS (FLASH_FLAG_OPERR | FLASH_FLAG_PROGERR | FLASH_FLAG_WRPERR | \ FLASH_FLAG_PGAERR | FLASH_FLAG_SIZERR | FLASH_FLAG_PGSERR | \ FLASH_FLAG_MISERR | FLASH_FLAG_FASTERR | FLASH_FLAG_RDERR | \ FLASH_FLAG_OPTVERR) #if defined(FLASH_OPTR_DBANK) #define FLASH_FLAG_ECCR_ERRORS (FLASH_FLAG_ECCC | FLASH_FLAG_ECCD | FLASH_FLAG_ECCC2 | FLASH_FLAG_ECCD2) #else #define FLASH_FLAG_ECCR_ERRORS (FLASH_FLAG_ECCC | FLASH_FLAG_ECCD) #endif #define FLASH_FLAG_ALL_ERRORS (FLASH_FLAG_SR_ERRORS | FLASH_FLAG_ECCR_ERRORS) #endif #if MICROPY_HW_STM32WB_FLASH_SYNCRONISATION // See WB55 specific documentation in AN5289 Rev 3, and in particular, Figure 10. #include "rfcore.h" #include "stm32wbxx_ll_hsem.h" // Protects all flash registers. #define SEMID_FLASH_REGISTERS (2) // Used by CPU1 to prevent CPU2 from writing/erasing data in flash memory. #define SEMID_FLASH_CPU1 (6) // Used by CPU2 to prevent CPU1 from writing/erasing data in flash memory. #define SEMID_FLASH_CPU2 (7) #endif typedef struct { uint32_t base_address; uint32_t sector_size; uint32_t sector_count; } flash_layout_t; #if defined(STM32F0) static const flash_layout_t flash_layout[] = { { FLASH_BASE, FLASH_PAGE_SIZE, (FLASH_BANK1_END + 1 - FLASH_BASE) / FLASH_PAGE_SIZE }, }; #elif defined(STM32F4) static const flash_layout_t flash_layout[] = { { 0x08000000, 0x04000, 4 }, { 0x08010000, 0x10000, 1 }, { 0x08020000, 0x20000, 3 }, #if defined(FLASH_SECTOR_8) { 0x08080000, 0x20000, 4 }, #endif #if defined(FLASH_SECTOR_12) { 0x08100000, 0x04000, 4 }, { 0x08110000, 0x10000, 1 }, { 0x08120000, 0x20000, 7 }, #endif }; #elif defined(STM32F7) // FLASH_FLAG_PGSERR (Programming Sequence Error) was renamed to // FLASH_FLAG_ERSERR (Erasing Sequence Error) in STM32F7 #define FLASH_FLAG_PGSERR FLASH_FLAG_ERSERR #if defined(STM32F722xx) || defined(STM32F723xx) || defined(STM32F732xx) || defined(STM32F733xx) static const flash_layout_t flash_layout[] = { { 0x08000000, 0x04000, 4 }, { 0x08010000, 0x10000, 1 }, { 0x08020000, 0x20000, 3 }, }; #else // This is for dual-bank mode disabled static const flash_layout_t flash_layout[] = { { 0x08000000, 0x08000, 4 }, { 0x08020000, 0x20000, 1 }, #if FLASH_SECTOR_TOTAL == 8 { 0x08040000, 0x40000, 3 }, #else { 0x08040000, 0x40000, 7 }, #endif }; #endif #elif defined(STM32G0) || defined(STM32G4) || defined(STM32L0) || defined(STM32L4) || defined(STM32WB) || defined(STM32WL) static const flash_layout_t flash_layout[] = { { (uint32_t)FLASH_BASE, (uint32_t)FLASH_PAGE_SIZE, 512 }, }; #elif defined(STM32L1) static const flash_layout_t flash_layout[] = { { (uint32_t)FLASH_BASE, 0x200, 1024 }, }; #elif defined(STM32H7) static const flash_layout_t flash_layout[] = { { 0x08000000, 0x20000, 16 }, }; #else #error Unsupported processor #endif #if (defined(STM32L4) && defined(SYSCFG_MEMRMP_FB_MODE)) || defined(STM32H7) // get the bank of a given flash address static uint32_t get_bank(uint32_t addr) { #if defined(STM32H7) if (READ_BIT(FLASH->OPTCR, FLASH_OPTCR_SWAP_BANK) == 0) { #else if (READ_BIT(SYSCFG->MEMRMP, SYSCFG_MEMRMP_FB_MODE) == 0) { #endif // no bank swap if (addr < (FLASH_BASE + FLASH_BANK_SIZE)) { return FLASH_BANK_1; } else { return FLASH_BANK_2; } } else { // bank swap if (addr < (FLASH_BASE + FLASH_BANK_SIZE)) { return FLASH_BANK_2; } else { return FLASH_BANK_1; } } } #if (defined(STM32L4) && defined(SYSCFG_MEMRMP_FB_MODE)) // get the page of a given flash address static uint32_t get_page(uint32_t addr) { if (addr < (FLASH_BASE + FLASH_BANK_SIZE)) { // bank 1 return (addr - FLASH_BASE) / FLASH_PAGE_SIZE; } else { // bank 2 return (addr - (FLASH_BASE + FLASH_BANK_SIZE)) / FLASH_PAGE_SIZE; } } #endif #elif (defined(STM32L4) && !defined(SYSCFG_MEMRMP_FB_MODE)) || defined(STM32WB) || defined(STM32WL) static uint32_t get_page(uint32_t addr) { return (addr - FLASH_BASE) / FLASH_PAGE_SIZE; } #elif defined(STM32G0) || defined(STM32G4) static uint32_t get_page(uint32_t addr) { return (addr - FLASH_BASE) / FLASH_PAGE_SIZE; } static uint32_t get_bank(uint32_t addr) { // no bank swap if (addr < (FLASH_BASE + FLASH_BANK_SIZE)) { return FLASH_BANK_1; } else { #if defined(FLASH_OPTR_DBANK) return FLASH_BANK_2; #else return 0; #endif } } #endif bool flash_is_valid_addr(uint32_t addr) { uint8_t last = MP_ARRAY_SIZE(flash_layout) - 1; uint32_t end_of_flash = flash_layout[last].base_address + flash_layout[last].sector_count * flash_layout[last].sector_size; return flash_layout[0].base_address <= addr && addr < end_of_flash; } int32_t flash_get_sector_info(uint32_t addr, uint32_t *start_addr, uint32_t *size) { if (addr >= flash_layout[0].base_address) { uint32_t sector_index = 0; for (int i = 0; i < MP_ARRAY_SIZE(flash_layout); ++i) { for (int j = 0; j < flash_layout[i].sector_count; ++j) { uint32_t sector_start_next = flash_layout[i].base_address + (j + 1) * flash_layout[i].sector_size; if (addr < sector_start_next) { if (start_addr != NULL) { *start_addr = flash_layout[i].base_address + j * flash_layout[i].sector_size; } if (size != NULL) { *size = flash_layout[i].sector_size; } return sector_index; } ++sector_index; } } } return -1; } int flash_erase(uint32_t flash_dest, uint32_t num_word32) { // check there is something to write if (num_word32 == 0) { return 0; } #if MICROPY_HW_STM32WB_FLASH_SYNCRONISATION // Acquire lock on the flash peripheral. while (LL_HSEM_1StepLock(HSEM, SEMID_FLASH_REGISTERS)) { } #endif // Unlock the flash for erase. HAL_FLASH_Unlock(); #if MICROPY_HW_STM32WB_FLASH_SYNCRONISATION // Tell the HCI controller stack we're starting an erase, so it // avoids radio activity for a while. rfcore_start_flash_erase(); // Wait for PES. while (LL_FLASH_IsActiveFlag_OperationSuspended()) { } // Wait for flash lock. while (LL_HSEM_1StepLock(HSEM, SEMID_FLASH_CPU2)) { } #endif // Clear pending flags (if any) and set up EraseInitStruct. FLASH_EraseInitTypeDef EraseInitStruct; #if defined(STM32F0) __HAL_FLASH_CLEAR_FLAG(FLASH_FLAG_EOP | FLASH_FLAG_WRPERR | FLASH_FLAG_PGERR); EraseInitStruct.TypeErase = FLASH_TYPEERASE_PAGES; EraseInitStruct.PageAddress = flash_dest; EraseInitStruct.NbPages = (4 * num_word32 + FLASH_PAGE_SIZE - 4) / FLASH_PAGE_SIZE; #elif defined(STM32G0) || defined(STM32G4) __HAL_FLASH_CLEAR_FLAG(FLASH_FLAG_ALL_ERRORS); EraseInitStruct.TypeErase = FLASH_TYPEERASE_PAGES; EraseInitStruct.Page = get_page(flash_dest); EraseInitStruct.Banks = get_bank(flash_dest); EraseInitStruct.NbPages = (4 * num_word32 + FLASH_PAGE_SIZE - 4) / FLASH_PAGE_SIZE; #elif defined(STM32L0) || defined(STM32L1) __HAL_FLASH_CLEAR_FLAG(FLASH_FLAG_EOP | FLASH_FLAG_WRPERR | FLASH_FLAG_PGAERR); EraseInitStruct.TypeErase = FLASH_TYPEERASE_PAGES; EraseInitStruct.PageAddress = flash_dest; EraseInitStruct.NbPages = (4 * num_word32 + FLASH_PAGE_SIZE - 4) / FLASH_PAGE_SIZE; #elif (defined(STM32L4) && !defined(SYSCFG_MEMRMP_FB_MODE)) || defined(STM32WB) || defined(STM32WL) __HAL_FLASH_CLEAR_FLAG(FLASH_FLAG_ALL_ERRORS); EraseInitStruct.TypeErase = FLASH_TYPEERASE_PAGES; EraseInitStruct.Page = get_page(flash_dest); EraseInitStruct.NbPages = (4 * num_word32 + FLASH_PAGE_SIZE - 4) / FLASH_PAGE_SIZE; #elif defined(STM32L4) __HAL_FLASH_CLEAR_FLAG(FLASH_FLAG_ALL_ERRORS); // The sector returned by flash_get_sector_info can not be used // as the flash has on each bank 0/1 pages 0..255 EraseInitStruct.TypeErase = FLASH_TYPEERASE_PAGES; EraseInitStruct.Banks = get_bank(flash_dest); EraseInitStruct.Page = get_page(flash_dest); EraseInitStruct.NbPages = get_page(flash_dest + 4 * num_word32 - 1) - EraseInitStruct.Page + 1; #else #if defined(STM32H7) __HAL_FLASH_CLEAR_FLAG(FLASH_FLAG_ALL_ERRORS_BANK1 | FLASH_FLAG_ALL_ERRORS_BANK2); #elif defined(STM32L1) __HAL_FLASH_CLEAR_FLAG(FLASH_FLAG_EOP | FLASH_FLAG_WRPERR | FLASH_FLAG_PGAERR); #else __HAL_FLASH_CLEAR_FLAG(FLASH_FLAG_EOP | FLASH_FLAG_OPERR | FLASH_FLAG_WRPERR | FLASH_FLAG_PGAERR | FLASH_FLAG_PGPERR | FLASH_FLAG_PGSERR); #endif EraseInitStruct.TypeErase = TYPEERASE_SECTORS; #if defined(FLASH_CR_PSIZE) EraseInitStruct.VoltageRange = VOLTAGE_RANGE_3; // voltage range needs to be 2.7V to 3.6V #else EraseInitStruct.VoltageRange = 0; // unused parameter on STM32H7A3/B3 #endif #if defined(STM32G0) || defined(STM32G4) || defined(STM32H7) EraseInitStruct.Banks = get_bank(flash_dest); #endif EraseInitStruct.Sector = flash_get_sector_info(flash_dest, NULL, NULL); EraseInitStruct.NbSectors = flash_get_sector_info(flash_dest + 4 * num_word32 - 1, NULL, NULL) - EraseInitStruct.Sector + 1; #endif // Erase the sectors. uint32_t SectorError = 0; HAL_StatusTypeDef status = HAL_FLASHEx_Erase(&EraseInitStruct, &SectorError); #if MICROPY_HW_STM32WB_FLASH_SYNCRONISATION // Release flash lock. while (__HAL_FLASH_GET_FLAG(FLASH_FLAG_CFGBSY)) { } LL_HSEM_ReleaseLock(HSEM, SEMID_FLASH_CPU2, 0); // Tell HCI controller that erase is over. rfcore_end_flash_erase(); #endif // Lock the flash after erase. HAL_FLASH_Lock(); #if MICROPY_HW_STM32WB_FLASH_SYNCRONISATION // Release lock on the flash peripheral. LL_HSEM_ReleaseLock(HSEM, SEMID_FLASH_REGISTERS, 0); #endif return mp_hal_status_to_neg_errno(status); } /* // erase the sector using an interrupt void flash_erase_it(uint32_t flash_dest, uint32_t num_word32) { // check there is something to write if (num_word32 == 0) { return; } // unlock HAL_FLASH_Unlock(); // Clear pending flags (if any) __HAL_FLASH_CLEAR_FLAG(FLASH_FLAG_EOP | FLASH_FLAG_OPERR | FLASH_FLAG_WRPERR | FLASH_FLAG_PGAERR | FLASH_FLAG_PGPERR|FLASH_FLAG_PGSERR); // erase the sector(s) FLASH_EraseInitTypeDef EraseInitStruct; EraseInitStruct.TypeErase = TYPEERASE_SECTORS; EraseInitStruct.VoltageRange = VOLTAGE_RANGE_3; // voltage range needs to be 2.7V to 3.6V EraseInitStruct.Sector = flash_get_sector_info(flash_dest, NULL, NULL); EraseInitStruct.NbSectors = flash_get_sector_info(flash_dest + 4 * num_word32 - 1, NULL, NULL) - EraseInitStruct.Sector + 1; if (HAL_FLASHEx_Erase_IT(&EraseInitStruct) != HAL_OK) { // error occurred during sector erase HAL_FLASH_Lock(); // lock the flash return; } } */ int flash_write(uint32_t flash_dest, const uint32_t *src, uint32_t num_word32) { #if MICROPY_HW_STM32WB_FLASH_SYNCRONISATION // Acquire lock on the flash peripheral. while (LL_HSEM_1StepLock(HSEM, SEMID_FLASH_REGISTERS)) { } #endif // Unlock the flash for write. HAL_FLASH_Unlock(); #if MICROPY_HW_STM32WB_FLASH_SYNCRONISATION // Wait for PES. while (LL_FLASH_IsActiveFlag_OperationSuspended()) { } #endif HAL_StatusTypeDef status = HAL_OK; #if defined(STM32G0) || defined(STM32G4) || defined(STM32L4) || defined(STM32WB) || defined(STM32WL) // program the flash uint64 by uint64 for (int i = 0; i < num_word32 / 2; i++) { uint64_t val = *(uint64_t *)src; #if MICROPY_HW_STM32WB_FLASH_SYNCRONISATION // Wait for flash lock. while (LL_HSEM_1StepLock(HSEM, SEMID_FLASH_CPU2)) { } #endif status = HAL_FLASH_Program(FLASH_TYPEPROGRAM_DOUBLEWORD, flash_dest, val); #if MICROPY_HW_STM32WB_FLASH_SYNCRONISATION // Release flash lock. LL_HSEM_ReleaseLock(HSEM, SEMID_FLASH_CPU2, 0); while (__HAL_FLASH_GET_FLAG(FLASH_FLAG_CFGBSY)) { } #endif if (status != HAL_OK) { num_word32 = 0; // don't write any odd word after this loop break; } flash_dest += 8; src += 2; } if ((num_word32 & 0x01) == 1) { uint64_t val = *(uint64_t *)flash_dest; val = (val & 0xffffffff00000000uL) | (*src); #if MICROPY_HW_STM32WB_FLASH_SYNCRONISATION // Wait for flash lock. while (LL_HSEM_1StepLock(HSEM, SEMID_FLASH_CPU2)) { } #endif status = HAL_FLASH_Program(FLASH_TYPEPROGRAM_DOUBLEWORD, flash_dest, val); #if MICROPY_HW_STM32WB_FLASH_SYNCRONISATION // Release flash lock. LL_HSEM_ReleaseLock(HSEM, SEMID_FLASH_CPU2, 0); while (__HAL_FLASH_GET_FLAG(FLASH_FLAG_CFGBSY)) { } #endif } #elif defined(STM32H7) // program the flash 256 bits at a time for (int i = 0; i < num_word32 / 8; i++) { status = HAL_FLASH_Program(FLASH_TYPEPROGRAM_FLASHWORD, flash_dest, (uint64_t)(uint32_t)src); if (status != HAL_OK) { break; } flash_dest += 32; src += 8; } #else // program the flash word by word for (int i = 0; i < num_word32; i++) { status = HAL_FLASH_Program(FLASH_TYPEPROGRAM_WORD, flash_dest, *src); if (status != HAL_OK) { break; } flash_dest += 4; src += 1; } #endif // Lock the flash after write. HAL_FLASH_Lock(); #if MICROPY_HW_STM32WB_FLASH_SYNCRONISATION // Release lock on the flash peripheral. LL_HSEM_ReleaseLock(HSEM, SEMID_FLASH_REGISTERS, 0); #endif return mp_hal_status_to_neg_errno(status); } /* use erase, then write void flash_erase_and_write(uint32_t flash_dest, const uint32_t *src, uint32_t num_word32) { // check there is something to write if (num_word32 == 0) { return; } // unlock HAL_FLASH_Unlock(); // Clear pending flags (if any) __HAL_FLASH_CLEAR_FLAG(FLASH_FLAG_EOP | FLASH_FLAG_OPERR | FLASH_FLAG_WRPERR | FLASH_FLAG_PGAERR | FLASH_FLAG_PGPERR|FLASH_FLAG_PGSERR); // erase the sector(s) FLASH_EraseInitTypeDef EraseInitStruct; EraseInitStruct.TypeErase = TYPEERASE_SECTORS; EraseInitStruct.VoltageRange = VOLTAGE_RANGE_3; // voltage range needs to be 2.7V to 3.6V EraseInitStruct.Sector = flash_get_sector_info(flash_dest, NULL, NULL); EraseInitStruct.NbSectors = flash_get_sector_info(flash_dest + 4 * num_word32 - 1, NULL, NULL) - EraseInitStruct.Sector + 1; uint32_t SectorError = 0; if (HAL_FLASHEx_Erase(&EraseInitStruct, &SectorError) != HAL_OK) { // error occurred during sector erase HAL_FLASH_Lock(); // lock the flash return; } // program the flash word by word for (int i = 0; i < num_word32; i++) { if (HAL_FLASH_Program(TYPEPROGRAM_WORD, flash_dest, *src) != HAL_OK) { // error occurred during flash write HAL_FLASH_Lock(); // lock the flash return; } flash_dest += 4; src += 1; } // lock the flash HAL_FLASH_Lock(); } */