/* * This file is part of the MicroPython project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2013, 2014 Damien P. George * Copyright (c) 2015 Glenn Ruben Bakke * Copyright (c) 2018 Ayke van Laethem * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include #include #include #include "py/nlr.h" #include "py/runtime.h" #include "py/stream.h" #include "py/mperrno.h" #include "py/mphal.h" #include "py/ringbuf.h" #include "pin.h" #include "genhdr/pins.h" #include "shared/runtime/interrupt_char.h" #include "uart.h" #include "mpconfigboard.h" #include "nrf.h" #include "mphalport.h" #if NRFX_UART_ENABLED #include "nrfx_uart.h" #else #include "nrfx_uarte.h" #endif #if MICROPY_PY_MACHINE_UART typedef struct _machine_hard_uart_buf_t { uint8_t tx_buf[1]; uint8_t rx_buf[1]; uint8_t rx_ringbuf_array[64]; volatile ringbuf_t rx_ringbuf; } machine_hard_uart_buf_t; #if NRFX_UARTE_ENABLED #define nrfx_uart_t nrfx_uarte_t #define nrfx_uart_config_t nrfx_uarte_config_t #define nrfx_uart_rx nrfx_uarte_rx #define nrfx_uart_tx nrfx_uarte_tx #define nrfx_uart_tx_in_progress nrfx_uarte_tx_in_progress #define nrfx_uart_init nrfx_uarte_init #define nrfx_uart_event_t nrfx_uarte_event_t #define NRFX_UART_INSTANCE NRFX_UARTE_INSTANCE #define NRF_UART_HWFC_ENABLED NRF_UARTE_HWFC_ENABLED #define NRF_UART_HWFC_DISABLED NRF_UARTE_HWFC_DISABLED #define NRF_UART_PARITY_EXCLUDED NRF_UARTE_PARITY_EXCLUDED #define NRFX_UART_EVT_RX_DONE NRFX_UARTE_EVT_RX_DONE #define NRF_UART_BAUDRATE_1200 NRF_UARTE_BAUDRATE_1200 #define NRF_UART_BAUDRATE_2400 NRF_UARTE_BAUDRATE_2400 #define NRF_UART_BAUDRATE_4800 NRF_UARTE_BAUDRATE_4800 #define NRF_UART_BAUDRATE_9600 NRF_UARTE_BAUDRATE_9600 #define NRF_UART_BAUDRATE_14400 NRF_UARTE_BAUDRATE_14400 #define NRF_UART_BAUDRATE_19200 NRF_UARTE_BAUDRATE_19200 #define NRF_UART_BAUDRATE_28800 NRF_UARTE_BAUDRATE_28800 #define NRF_UART_BAUDRATE_38400 NRF_UARTE_BAUDRATE_38400 #define NRF_UART_BAUDRATE_57600 NRF_UARTE_BAUDRATE_57600 #define NRF_UART_BAUDRATE_76800 NRF_UARTE_BAUDRATE_76800 #define NRF_UART_BAUDRATE_115200 NRF_UARTE_BAUDRATE_115200 #define NRF_UART_BAUDRATE_230400 NRF_UARTE_BAUDRATE_230400 #define NRF_UART_BAUDRATE_250000 NRF_UARTE_BAUDRATE_250000 #define NRF_UART_BAUDRATE_1000000 NRF_UARTE_BAUDRATE_1000000 #endif typedef struct _machine_hard_uart_obj_t { mp_obj_base_t base; const nrfx_uart_t * p_uart; // Driver instance machine_hard_uart_buf_t *buf; } machine_hard_uart_obj_t; static const nrfx_uart_t instance0 = NRFX_UART_INSTANCE(0); STATIC machine_hard_uart_buf_t machine_hard_uart_buf[1]; STATIC const machine_hard_uart_obj_t machine_hard_uart_obj[] = { {{&machine_hard_uart_type}, .p_uart = &instance0, .buf = &machine_hard_uart_buf[0]}, }; void uart_init0(void) { } STATIC int uart_find(mp_obj_t id) { // given an integer id int uart_id = mp_obj_get_int(id); if (uart_id >= 0 && uart_id < MP_ARRAY_SIZE(machine_hard_uart_obj)) { return uart_id; } mp_raise_ValueError(MP_ERROR_TEXT("UART doesn't exist")); } STATIC void uart_event_handler(nrfx_uart_event_t const *p_event, void *p_context) { machine_hard_uart_obj_t *self = p_context; if (p_event->type == NRFX_UART_EVT_RX_DONE) { int chr = self->buf->rx_buf[0]; nrfx_uart_rx(self->p_uart, &self->buf->rx_buf[0], 1); #if !MICROPY_PY_BLE_NUS && MICROPY_KBD_EXCEPTION if (chr == mp_interrupt_char) { mp_sched_keyboard_interrupt(); } else #endif { ringbuf_put((ringbuf_t*)&self->buf->rx_ringbuf, chr); } } } bool uart_rx_any(const machine_hard_uart_obj_t *self) { return self->buf->rx_ringbuf.iput != self->buf->rx_ringbuf.iget; } int uart_rx_char(const machine_hard_uart_obj_t * self) { return ringbuf_get((ringbuf_t*)&self->buf->rx_ringbuf); } STATIC nrfx_err_t uart_tx_char(const machine_hard_uart_obj_t * self, int c) { while (nrfx_uart_tx_in_progress(self->p_uart)) { ; } self->buf->tx_buf[0] = c; return nrfx_uart_tx(self->p_uart, &self->buf->tx_buf[0], 1); } void uart_tx_strn(const machine_hard_uart_obj_t *uart_obj, const char *str, uint len) { for (const char *top = str + len; str < top; str++) { uart_tx_char(uart_obj, *str); } } void uart_tx_strn_cooked(const machine_hard_uart_obj_t *uart_obj, const char *str, uint len) { for (const char *top = str + len; str < top; str++) { if (*str == '\n') { uart_tx_char(uart_obj, '\r'); } uart_tx_char(uart_obj, *str); } } /******************************************************************************/ /* MicroPython bindings */ STATIC void machine_hard_uart_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) { mp_printf(print, "UART(0)"); } /// \method init(id, baudrate) /// /// Initialise the UART bus with the given parameters: /// - `id`is bus id. /// - `baudrate` is the clock rate. STATIC mp_obj_t machine_hard_uart_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *all_args) { enum { ARG_id, ARG_baudrate }; static const mp_arg_t allowed_args[] = { { MP_QSTR_id, MP_ARG_REQUIRED | MP_ARG_OBJ }, { MP_QSTR_baudrate, MP_ARG_REQUIRED | MP_ARG_INT, {.u_int = 9600} }, }; // parse args mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)]; mp_arg_parse_all_kw_array(n_args, n_kw, all_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args); // get static peripheral object int uart_id = uart_find(args[ARG_id].u_obj); const machine_hard_uart_obj_t * self = &machine_hard_uart_obj[uart_id]; nrfx_uart_config_t config; // flow control #if MICROPY_HW_UART1_HWFC config.hal_cfg.hwfc = NRF_UART_HWFC_ENABLED; #else config.hal_cfg.hwfc = NRF_UART_HWFC_DISABLED; #endif config.hal_cfg.parity = NRF_UART_PARITY_EXCLUDED; #if (BLUETOOTH_SD == 100) config.interrupt_priority = 3; #else config.interrupt_priority = 6; #endif // These baudrates are not supported, it seems. if (args[ARG_baudrate].u_int < 1200 || args[ARG_baudrate].u_int > 1000000) { mp_raise_ValueError(MP_ERROR_TEXT("UART baudrate not supported")); } // Magic: calculate 'baudrate' register from the input number. // Every value listed in the datasheet will be converted to the // correct register value, except for 192600. I believe the value // listed in the nrf52 datasheet (0x0EBED000) is incorrectly rounded // and should be 0x0EBEE000, as the nrf51 datasheet lists the // nonrounded value 0x0EBEDFA4. // Some background: // https://devzone.nordicsemi.com/f/nordic-q-a/391/uart-baudrate-register-values/2046#2046 config.baudrate = args[ARG_baudrate].u_int / 400 * (uint32_t)(400ULL * (uint64_t)UINT32_MAX / 16000000ULL); config.baudrate = (config.baudrate + 0x800) & 0xffffff000; // rounding config.pseltxd = MICROPY_HW_UART1_TX; config.pselrxd = MICROPY_HW_UART1_RX; #if MICROPY_HW_UART1_HWFC config.pselrts = MICROPY_HW_UART1_RTS; config.pselcts = MICROPY_HW_UART1_CTS; #endif // Set context to this instance of UART config.p_context = (void *)self; // Initialise ring buffer self->buf->rx_ringbuf.buf = self->buf->rx_ringbuf_array; self->buf->rx_ringbuf.size = sizeof(self->buf->rx_ringbuf_array); self->buf->rx_ringbuf.iget = 0; self->buf->rx_ringbuf.iput = 0; // Enable event callback and start asynchronous receive nrfx_uart_init(self->p_uart, &config, uart_event_handler); nrfx_uart_rx(self->p_uart, &self->buf->rx_buf[0], 1); #if NRFX_UART_ENABLED nrfx_uart_rx_enable(self->p_uart); #endif return MP_OBJ_FROM_PTR(self); } /// \method writechar(char) /// Write a single character on the bus. `char` is an integer to write. /// Return value: `None`. STATIC mp_obj_t machine_hard_uart_writechar(mp_obj_t self_in, mp_obj_t char_in) { machine_hard_uart_obj_t *self = self_in; // get the character to write (might be 9 bits) int data = mp_obj_get_int(char_in); nrfx_err_t err = uart_tx_char(self, data); if (err != NRFX_SUCCESS) { mp_hal_raise(err); } return mp_const_none; } STATIC MP_DEFINE_CONST_FUN_OBJ_2(machine_hard_uart_writechar_obj, machine_hard_uart_writechar); /// \method readchar() /// Receive a single character on the bus. /// Return value: The character read, as an integer. Returns -1 on timeout. STATIC mp_obj_t machine_hard_uart_readchar(mp_obj_t self_in) { machine_hard_uart_obj_t *self = self_in; return MP_OBJ_NEW_SMALL_INT(uart_rx_char(self)); } STATIC MP_DEFINE_CONST_FUN_OBJ_1(machine_hard_uart_readchar_obj, machine_hard_uart_readchar); // uart.sendbreak() STATIC mp_obj_t machine_hard_uart_sendbreak(mp_obj_t self_in) { return mp_const_none; } STATIC MP_DEFINE_CONST_FUN_OBJ_1(machine_hard_uart_sendbreak_obj, machine_hard_uart_sendbreak); STATIC const mp_rom_map_elem_t machine_hard_uart_locals_dict_table[] = { // instance methods { MP_ROM_QSTR(MP_QSTR_read), MP_ROM_PTR(&mp_stream_read_obj) }, { MP_ROM_QSTR(MP_QSTR_readline), MP_ROM_PTR(&mp_stream_unbuffered_readline_obj) }, { MP_ROM_QSTR(MP_QSTR_readinto), MP_ROM_PTR(&mp_stream_readinto_obj) }, { MP_ROM_QSTR(MP_QSTR_write), MP_ROM_PTR(&mp_stream_write_obj) }, { MP_ROM_QSTR(MP_QSTR_writechar), MP_ROM_PTR(&machine_hard_uart_writechar_obj) }, { MP_ROM_QSTR(MP_QSTR_readchar), MP_ROM_PTR(&machine_hard_uart_readchar_obj) }, { MP_ROM_QSTR(MP_QSTR_sendbreak), MP_ROM_PTR(&machine_hard_uart_sendbreak_obj) }, // class constants /* { MP_ROM_QSTR(MP_QSTR_RTS), MP_ROM_INT(UART_HWCONTROL_RTS) }, { MP_ROM_QSTR(MP_QSTR_CTS), MP_ROM_INT(UART_HWCONTROL_CTS) }, */ }; STATIC MP_DEFINE_CONST_DICT(machine_hard_uart_locals_dict, machine_hard_uart_locals_dict_table); STATIC mp_uint_t machine_hard_uart_read(mp_obj_t self_in, void *buf_in, mp_uint_t size, int *errcode) { const machine_hard_uart_obj_t *self = self_in; byte *buf = buf_in; // read the data for (size_t i = 0; i < size; i++) { while (!uart_rx_any(self)) { } buf[i] = uart_rx_char(self); } return size; } STATIC mp_uint_t machine_hard_uart_write(mp_obj_t self_in, const void *buf_in, mp_uint_t size, int *errcode) { machine_hard_uart_obj_t *self = self_in; const byte *buf = buf_in; nrfx_err_t err = NRFX_SUCCESS; for (int i = 0; i < size; i++) { err = uart_tx_char(self, (int)((uint8_t *)buf)[i]); } if (err == NRFX_SUCCESS) { // return number of bytes written return size; } else { *errcode = mp_hal_status_to_errno_table[err]; return MP_STREAM_ERROR; } } STATIC mp_uint_t machine_hard_uart_ioctl(mp_obj_t self_in, mp_uint_t request, uintptr_t arg, int *errcode) { machine_hard_uart_obj_t *self = self_in; (void)self; return MP_STREAM_ERROR; } STATIC const mp_stream_p_t uart_stream_p = { .read = machine_hard_uart_read, .write = machine_hard_uart_write, .ioctl = machine_hard_uart_ioctl, .is_text = false, }; const mp_obj_type_t machine_hard_uart_type = { { &mp_type_type }, .name = MP_QSTR_UART, .print = machine_hard_uart_print, .make_new = machine_hard_uart_make_new, .getiter = mp_identity_getiter, .iternext = mp_stream_unbuffered_iter, .protocol = &uart_stream_p, .locals_dict = (mp_obj_dict_t*)&machine_hard_uart_locals_dict, }; #endif // MICROPY_PY_MACHINE_UART