# Pure Python AES encryption routines. # # AES is integer based and inplace so doesn't use the heap. It is therefore # a good test of raw performance and correctness of the VM/runtime. # # The AES code comes first (code originates from a C version authored by D.P.George) # and then the test harness at the bottom. # # MIT license; Copyright (c) 2016 Damien P. George on behalf of Pycom Ltd ################################################################## # discrete arithmetic routines, mostly from a precomputed table # non-linear, invertible, substitution box # fmt: off aes_s_box_table = bytes(( 0x63,0x7c,0x77,0x7b,0xf2,0x6b,0x6f,0xc5,0x30,0x01,0x67,0x2b,0xfe,0xd7,0xab,0x76, 0xca,0x82,0xc9,0x7d,0xfa,0x59,0x47,0xf0,0xad,0xd4,0xa2,0xaf,0x9c,0xa4,0x72,0xc0, 0xb7,0xfd,0x93,0x26,0x36,0x3f,0xf7,0xcc,0x34,0xa5,0xe5,0xf1,0x71,0xd8,0x31,0x15, 0x04,0xc7,0x23,0xc3,0x18,0x96,0x05,0x9a,0x07,0x12,0x80,0xe2,0xeb,0x27,0xb2,0x75, 0x09,0x83,0x2c,0x1a,0x1b,0x6e,0x5a,0xa0,0x52,0x3b,0xd6,0xb3,0x29,0xe3,0x2f,0x84, 0x53,0xd1,0x00,0xed,0x20,0xfc,0xb1,0x5b,0x6a,0xcb,0xbe,0x39,0x4a,0x4c,0x58,0xcf, 0xd0,0xef,0xaa,0xfb,0x43,0x4d,0x33,0x85,0x45,0xf9,0x02,0x7f,0x50,0x3c,0x9f,0xa8, 0x51,0xa3,0x40,0x8f,0x92,0x9d,0x38,0xf5,0xbc,0xb6,0xda,0x21,0x10,0xff,0xf3,0xd2, 0xcd,0x0c,0x13,0xec,0x5f,0x97,0x44,0x17,0xc4,0xa7,0x7e,0x3d,0x64,0x5d,0x19,0x73, 0x60,0x81,0x4f,0xdc,0x22,0x2a,0x90,0x88,0x46,0xee,0xb8,0x14,0xde,0x5e,0x0b,0xdb, 0xe0,0x32,0x3a,0x0a,0x49,0x06,0x24,0x5c,0xc2,0xd3,0xac,0x62,0x91,0x95,0xe4,0x79, 0xe7,0xc8,0x37,0x6d,0x8d,0xd5,0x4e,0xa9,0x6c,0x56,0xf4,0xea,0x65,0x7a,0xae,0x08, 0xba,0x78,0x25,0x2e,0x1c,0xa6,0xb4,0xc6,0xe8,0xdd,0x74,0x1f,0x4b,0xbd,0x8b,0x8a, 0x70,0x3e,0xb5,0x66,0x48,0x03,0xf6,0x0e,0x61,0x35,0x57,0xb9,0x86,0xc1,0x1d,0x9e, 0xe1,0xf8,0x98,0x11,0x69,0xd9,0x8e,0x94,0x9b,0x1e,0x87,0xe9,0xce,0x55,0x28,0xdf, 0x8c,0xa1,0x89,0x0d,0xbf,0xe6,0x42,0x68,0x41,0x99,0x2d,0x0f,0xb0,0x54,0xbb,0x16, )) # fmt: on # multiplication of polynomials modulo x^8 + x^4 + x^3 + x + 1 = 0x11b def aes_gf8_mul_2(x): if x & 0x80: return (x << 1) ^ 0x11B else: return x << 1 def aes_gf8_mul_3(x): return x ^ aes_gf8_mul_2(x) # non-linear, invertible, substitution box def aes_s_box(a): return aes_s_box_table[a & 0xFF] # return 0x02^(a-1) in GF(2^8) def aes_r_con(a): ans = 1 while a > 1: ans <<= 1 if ans & 0x100: ans ^= 0x11B a -= 1 return ans ################################################################## # basic AES algorithm; see FIPS-197 # all inputs must be size 16 def aes_add_round_key(state, w): for i in range(16): state[i] ^= w[i] # combined sub_bytes, shift_rows, mix_columns, add_round_key # all inputs must be size 16 def aes_sb_sr_mc_ark(state, w, w_idx, temp): temp_idx = 0 for i in range(4): x0 = aes_s_box_table[state[i * 4]] x1 = aes_s_box_table[state[1 + ((i + 1) & 3) * 4]] x2 = aes_s_box_table[state[2 + ((i + 2) & 3) * 4]] x3 = aes_s_box_table[state[3 + ((i + 3) & 3) * 4]] temp[temp_idx] = aes_gf8_mul_2(x0) ^ aes_gf8_mul_3(x1) ^ x2 ^ x3 ^ w[w_idx] temp[temp_idx + 1] = x0 ^ aes_gf8_mul_2(x1) ^ aes_gf8_mul_3(x2) ^ x3 ^ w[w_idx + 1] temp[temp_idx + 2] = x0 ^ x1 ^ aes_gf8_mul_2(x2) ^ aes_gf8_mul_3(x3) ^ w[w_idx + 2] temp[temp_idx + 3] = aes_gf8_mul_3(x0) ^ x1 ^ x2 ^ aes_gf8_mul_2(x3) ^ w[w_idx + 3] w_idx += 4 temp_idx += 4 for i in range(16): state[i] = temp[i] # combined sub_bytes, shift_rows, add_round_key # all inputs must be size 16 def aes_sb_sr_ark(state, w, w_idx, temp): temp_idx = 0 for i in range(4): x0 = aes_s_box_table[state[i * 4]] x1 = aes_s_box_table[state[1 + ((i + 1) & 3) * 4]] x2 = aes_s_box_table[state[2 + ((i + 2) & 3) * 4]] x3 = aes_s_box_table[state[3 + ((i + 3) & 3) * 4]] temp[temp_idx] = x0 ^ w[w_idx] temp[temp_idx + 1] = x1 ^ w[w_idx + 1] temp[temp_idx + 2] = x2 ^ w[w_idx + 2] temp[temp_idx + 3] = x3 ^ w[w_idx + 3] w_idx += 4 temp_idx += 4 for i in range(16): state[i] = temp[i] # take state as input and change it to the next state in the sequence # state and temp have size 16, w has size 16 * (Nr + 1), Nr >= 1 def aes_state(state, w, temp, nr): aes_add_round_key(state, w) w_idx = 16 for i in range(nr - 1): aes_sb_sr_mc_ark(state, w, w_idx, temp) w_idx += 16 aes_sb_sr_ark(state, w, w_idx, temp) # expand 'key' to 'w' for use with aes_state # key has size 4 * Nk, w has size 16 * (Nr + 1), temp has size 16 def aes_key_expansion(key, w, temp, nk, nr): for i in range(4 * nk): w[i] = key[i] w_idx = 4 * nk - 4 for i in range(nk, 4 * (nr + 1)): t = temp t_idx = 0 if i % nk == 0: t[0] = aes_s_box(w[w_idx + 1]) ^ aes_r_con(i // nk) for j in range(1, 4): t[j] = aes_s_box(w[w_idx + (j + 1) % 4]) elif nk > 6 and i % nk == 4: for j in range(0, 4): t[j] = aes_s_box(w[w_idx + j]) else: t = w t_idx = w_idx w_idx += 4 for j in range(4): w[w_idx + j] = w[w_idx + j - 4 * nk] ^ t[t_idx + j] ################################################################## # simple use of AES algorithm, using output feedback (OFB) mode class AES: def __init__(self, keysize): if keysize == 128: self.nk = 4 self.nr = 10 elif keysize == 192: self.nk = 6 self.nr = 12 else: assert keysize == 256 self.nk = 8 self.nr = 14 self.state = bytearray(16) self.w = bytearray(16 * (self.nr + 1)) self.temp = bytearray(16) self.state_pos = 16 def set_key(self, key): aes_key_expansion(key, self.w, self.temp, self.nk, self.nr) self.state_pos = 16 def set_iv(self, iv): for i in range(16): self.state[i] = iv[i] self.state_pos = 16 def get_some_state(self, n_needed): if self.state_pos >= 16: aes_state(self.state, self.w, self.temp, self.nr) self.state_pos = 0 n = 16 - self.state_pos if n > n_needed: n = n_needed return n def apply_to(self, data): idx = 0 n = len(data) while n > 0: ln = self.get_some_state(n) n -= ln for i in range(ln): data[idx + i] ^= self.state[self.state_pos + i] idx += ln self.state_pos += n ########################################################################### # Benchmark interface bm_params = { (50, 25): (1, 16), (100, 100): (1, 32), (1000, 1000): (4, 256), (5000, 1000): (20, 256), } def bm_setup(params): nloop, datalen = params aes = AES(256) key = bytearray(256 // 8) iv = bytearray(16) data = bytearray(datalen) # from now on we don't use the heap def run(): for loop in range(nloop): # encrypt aes.set_key(key) aes.set_iv(iv) for i in range(2): aes.apply_to(data) # decrypt aes.set_key(key) aes.set_iv(iv) for i in range(2): aes.apply_to(data) # verify for i in range(len(data)): assert data[i] == 0 def result(): return params[0] * params[1], True return run, result