# Source: https://github.com/python/pyperformance # License: MIT # create chaosgame-like fractals # Copyright (C) 2005 Carl Friedrich Bolz import math import random class GVector(object): def __init__(self, x=0, y=0, z=0): self.x = x self.y = y self.z = z def Mag(self): return math.sqrt(self.x**2 + self.y**2 + self.z**2) def dist(self, other): return math.sqrt( (self.x - other.x) ** 2 + (self.y - other.y) ** 2 + (self.z - other.z) ** 2 ) def __add__(self, other): if not isinstance(other, GVector): raise ValueError("Can't add GVector to " + str(type(other))) v = GVector(self.x + other.x, self.y + other.y, self.z + other.z) return v def __sub__(self, other): return self + other * -1 def __mul__(self, other): v = GVector(self.x * other, self.y * other, self.z * other) return v __rmul__ = __mul__ def linear_combination(self, other, l1, l2=None): if l2 is None: l2 = 1 - l1 v = GVector( self.x * l1 + other.x * l2, self.y * l1 + other.y * l2, self.z * l1 + other.z * l2 ) return v def __str__(self): return "<%f, %f, %f>" % (self.x, self.y, self.z) def __repr__(self): return "GVector(%f, %f, %f)" % (self.x, self.y, self.z) class Spline(object): """Class for representing B-Splines and NURBS of arbitrary degree""" def __init__(self, points, degree, knots): """Creates a Spline. points is a list of GVector, degree is the degree of the Spline. """ if len(points) > len(knots) - degree + 1: raise ValueError("too many control points") elif len(points) < len(knots) - degree + 1: raise ValueError("not enough control points") last = knots[0] for cur in knots[1:]: if cur < last: raise ValueError("knots not strictly increasing") last = cur self.knots = knots self.points = points self.degree = degree def GetDomain(self): """Returns the domain of the B-Spline""" return (self.knots[self.degree - 1], self.knots[len(self.knots) - self.degree]) def __call__(self, u): """Calculates a point of the B-Spline using de Boors Algorithm""" dom = self.GetDomain() if u < dom[0] or u > dom[1]: raise ValueError("Function value not in domain") if u == dom[0]: return self.points[0] if u == dom[1]: return self.points[-1] I = self.GetIndex(u) d = [self.points[I - self.degree + 1 + ii] for ii in range(self.degree + 1)] U = self.knots for ik in range(1, self.degree + 1): for ii in range(I - self.degree + ik + 1, I + 2): ua = U[ii + self.degree - ik] ub = U[ii - 1] co1 = (ua - u) / (ua - ub) co2 = (u - ub) / (ua - ub) index = ii - I + self.degree - ik - 1 d[index] = d[index].linear_combination(d[index + 1], co1, co2) return d[0] def GetIndex(self, u): dom = self.GetDomain() for ii in range(self.degree - 1, len(self.knots) - self.degree): if u >= self.knots[ii] and u < self.knots[ii + 1]: I = ii break else: I = dom[1] - 1 return I def __len__(self): return len(self.points) def __repr__(self): return "Spline(%r, %r, %r)" % (self.points, self.degree, self.knots) def write_ppm(im, w, h, filename): with open(filename, "wb") as f: f.write(b"P6\n%i %i\n255\n" % (w, h)) for j in range(h): for i in range(w): val = im[j * w + i] c = val * 255 f.write(b"%c%c%c" % (c, c, c)) class Chaosgame(object): def __init__(self, splines, thickness, subdivs): self.splines = splines self.thickness = thickness self.minx = min([p.x for spl in splines for p in spl.points]) self.miny = min([p.y for spl in splines for p in spl.points]) self.maxx = max([p.x for spl in splines for p in spl.points]) self.maxy = max([p.y for spl in splines for p in spl.points]) self.height = self.maxy - self.miny self.width = self.maxx - self.minx self.num_trafos = [] maxlength = thickness * self.width / self.height for spl in splines: length = 0 curr = spl(0) for i in range(1, subdivs + 1): last = curr t = 1 / subdivs * i curr = spl(t) length += curr.dist(last) self.num_trafos.append(max(1, int(length / maxlength * 1.5))) self.num_total = sum(self.num_trafos) def get_random_trafo(self): r = random.randrange(int(self.num_total) + 1) l = 0 for i in range(len(self.num_trafos)): if r >= l and r < l + self.num_trafos[i]: return i, random.randrange(self.num_trafos[i]) l += self.num_trafos[i] return len(self.num_trafos) - 1, random.randrange(self.num_trafos[-1]) def transform_point(self, point, trafo=None): x = (point.x - self.minx) / self.width y = (point.y - self.miny) / self.height if trafo is None: trafo = self.get_random_trafo() start, end = self.splines[trafo[0]].GetDomain() length = end - start seg_length = length / self.num_trafos[trafo[0]] t = start + seg_length * trafo[1] + seg_length * x basepoint = self.splines[trafo[0]](t) if t + 1 / 50000 > end: neighbour = self.splines[trafo[0]](t - 1 / 50000) derivative = neighbour - basepoint else: neighbour = self.splines[trafo[0]](t + 1 / 50000) derivative = basepoint - neighbour if derivative.Mag() != 0: basepoint.x += derivative.y / derivative.Mag() * (y - 0.5) * self.thickness basepoint.y += -derivative.x / derivative.Mag() * (y - 0.5) * self.thickness else: # can happen, especially with single precision float pass self.truncate(basepoint) return basepoint def truncate(self, point): if point.x >= self.maxx: point.x = self.maxx if point.y >= self.maxy: point.y = self.maxy if point.x < self.minx: point.x = self.minx if point.y < self.miny: point.y = self.miny def create_image_chaos(self, w, h, iterations, rng_seed): # Always use the same sequence of random numbers # to get reproductible benchmark random.seed(rng_seed) im = bytearray(w * h) point = GVector((self.maxx + self.minx) / 2, (self.maxy + self.miny) / 2, 0) for _ in range(iterations): point = self.transform_point(point) x = (point.x - self.minx) / self.width * w y = (point.y - self.miny) / self.height * h x = int(x) y = int(y) if x == w: x -= 1 if y == h: y -= 1 im[(h - y - 1) * w + x] = 1 return im ########################################################################### # Benchmark interface if not hasattr(random, "randrange"): print("SKIP") raise SystemExit bm_params = { (100, 50): (0.25, 100, 50, 50, 50, 1234), (1000, 1000): (0.25, 200, 400, 400, 1000, 1234), (5000, 1000): (0.25, 400, 500, 500, 7000, 1234), } def bm_setup(params): splines = [ Spline( [ GVector(1.597, 3.304, 0.0), GVector(1.576, 4.123, 0.0), GVector(1.313, 5.288, 0.0), GVector(1.619, 5.330, 0.0), GVector(2.890, 5.503, 0.0), GVector(2.373, 4.382, 0.0), GVector(1.662, 4.360, 0.0), ], 3, [0, 0, 0, 1, 1, 1, 2, 2, 2], ), Spline( [ GVector(2.805, 4.017, 0.0), GVector(2.551, 3.525, 0.0), GVector(1.979, 2.620, 0.0), GVector(1.979, 2.620, 0.0), ], 3, [0, 0, 0, 1, 1, 1], ), Spline( [ GVector(2.002, 4.011, 0.0), GVector(2.335, 3.313, 0.0), GVector(2.367, 3.233, 0.0), GVector(2.367, 3.233, 0.0), ], 3, [0, 0, 0, 1, 1, 1], ), ] chaos = Chaosgame(splines, params[0], params[1]) image = None def run(): nonlocal image _, _, width, height, iter, rng_seed = params image = chaos.create_image_chaos(width, height, iter, rng_seed) def result(): norm = params[4] # Images are not the same when floating point behaviour is different, # so return percentage of pixels that are set (rounded to int). # write_ppm(image, params[2], params[3], 'out-.ppm') pix = int(100 * sum(image) / len(image)) return norm, pix return run, result