#include #include #include #include "py/obj.h" #include "py/objfun.h" #include "py/objstr.h" #include "py/runtime.h" #include "py/gc.h" #include "py/repl.h" #include "py/mpz.h" #include "py/builtin.h" #include "py/emit.h" #include "py/formatfloat.h" #include "py/ringbuf.h" #include "py/pairheap.h" #include "py/stream.h" #include "py/binary.h" #include "py/bc.h" // expected output of this file is found in extra_coverage.py.exp #if defined(MICROPY_UNIX_COVERAGE) // stream testing object typedef struct _mp_obj_streamtest_t { mp_obj_base_t base; uint8_t *buf; size_t len; size_t pos; int error_code; } mp_obj_streamtest_t; static mp_obj_t stest_set_buf(mp_obj_t o_in, mp_obj_t buf_in) { mp_obj_streamtest_t *o = MP_OBJ_TO_PTR(o_in); mp_buffer_info_t bufinfo; mp_get_buffer_raise(buf_in, &bufinfo, MP_BUFFER_READ); o->buf = m_new(uint8_t, bufinfo.len); memcpy(o->buf, bufinfo.buf, bufinfo.len); o->len = bufinfo.len; o->pos = 0; return mp_const_none; } static MP_DEFINE_CONST_FUN_OBJ_2(stest_set_buf_obj, stest_set_buf); static mp_obj_t stest_set_error(mp_obj_t o_in, mp_obj_t err_in) { mp_obj_streamtest_t *o = MP_OBJ_TO_PTR(o_in); o->error_code = mp_obj_get_int(err_in); return mp_const_none; } static MP_DEFINE_CONST_FUN_OBJ_2(stest_set_error_obj, stest_set_error); static mp_uint_t stest_read(mp_obj_t o_in, void *buf, mp_uint_t size, int *errcode) { mp_obj_streamtest_t *o = MP_OBJ_TO_PTR(o_in); if (o->pos < o->len) { if (size > o->len - o->pos) { size = o->len - o->pos; } memcpy(buf, o->buf + o->pos, size); o->pos += size; return size; } else if (o->error_code == 0) { return 0; } else { *errcode = o->error_code; return MP_STREAM_ERROR; } } static mp_uint_t stest_write(mp_obj_t o_in, const void *buf, mp_uint_t size, int *errcode) { mp_obj_streamtest_t *o = MP_OBJ_TO_PTR(o_in); (void)buf; (void)size; *errcode = o->error_code; return MP_STREAM_ERROR; } static mp_uint_t stest_ioctl(mp_obj_t o_in, mp_uint_t request, uintptr_t arg, int *errcode) { mp_obj_streamtest_t *o = MP_OBJ_TO_PTR(o_in); (void)arg; (void)request; (void)errcode; if (o->error_code != 0) { *errcode = o->error_code; return MP_STREAM_ERROR; } return 0; } static const mp_rom_map_elem_t rawfile_locals_dict_table[] = { { MP_ROM_QSTR(MP_QSTR_set_buf), MP_ROM_PTR(&stest_set_buf_obj) }, { MP_ROM_QSTR(MP_QSTR_set_error), MP_ROM_PTR(&stest_set_error_obj) }, { MP_ROM_QSTR(MP_QSTR_read), MP_ROM_PTR(&mp_stream_read_obj) }, { MP_ROM_QSTR(MP_QSTR_read1), MP_ROM_PTR(&mp_stream_read1_obj) }, { MP_ROM_QSTR(MP_QSTR_write), MP_ROM_PTR(&mp_stream_write_obj) }, { MP_ROM_QSTR(MP_QSTR_write1), MP_ROM_PTR(&mp_stream_write1_obj) }, { MP_ROM_QSTR(MP_QSTR_readinto), MP_ROM_PTR(&mp_stream_readinto_obj) }, { MP_ROM_QSTR(MP_QSTR_readline), MP_ROM_PTR(&mp_stream_unbuffered_readline_obj) }, { MP_ROM_QSTR(MP_QSTR_ioctl), MP_ROM_PTR(&mp_stream_ioctl_obj) }, }; static MP_DEFINE_CONST_DICT(rawfile_locals_dict, rawfile_locals_dict_table); static const mp_stream_p_t fileio_stream_p = { .read = stest_read, .write = stest_write, .ioctl = stest_ioctl, }; static MP_DEFINE_CONST_OBJ_TYPE( mp_type_stest_fileio, MP_QSTR_stest_fileio, MP_TYPE_FLAG_NONE, protocol, &fileio_stream_p, locals_dict, &rawfile_locals_dict ); // stream read returns non-blocking error static mp_uint_t stest_read2(mp_obj_t o_in, void *buf, mp_uint_t size, int *errcode) { (void)o_in; (void)buf; (void)size; *errcode = MP_EAGAIN; return MP_STREAM_ERROR; } static const mp_rom_map_elem_t rawfile_locals_dict_table2[] = { { MP_ROM_QSTR(MP_QSTR_read), MP_ROM_PTR(&mp_stream_read_obj) }, }; static MP_DEFINE_CONST_DICT(rawfile_locals_dict2, rawfile_locals_dict_table2); static const mp_stream_p_t textio_stream_p2 = { .read = stest_read2, .write = NULL, .is_text = true, }; static MP_DEFINE_CONST_OBJ_TYPE( mp_type_stest_textio2, MP_QSTR_stest_textio2, MP_TYPE_FLAG_NONE, protocol, &textio_stream_p2, locals_dict, &rawfile_locals_dict2 ); // str/bytes objects without a valid hash static const mp_obj_str_t str_no_hash_obj = {{&mp_type_str}, 0, 10, (const byte *)"0123456789"}; static const mp_obj_str_t bytes_no_hash_obj = {{&mp_type_bytes}, 0, 10, (const byte *)"0123456789"}; static int pairheap_lt(mp_pairheap_t *a, mp_pairheap_t *b) { return (uintptr_t)a < (uintptr_t)b; } // ops array contain operations: x>=0 means push(x), x<0 means delete(-x) static void pairheap_test(size_t nops, int *ops) { mp_pairheap_t node[8]; for (size_t i = 0; i < MP_ARRAY_SIZE(node); ++i) { mp_pairheap_init_node(pairheap_lt, &node[i]); } mp_pairheap_t *heap = mp_pairheap_new(pairheap_lt); mp_printf(&mp_plat_print, "create:"); for (size_t i = 0; i < nops; ++i) { if (ops[i] >= 0) { heap = mp_pairheap_push(pairheap_lt, heap, &node[ops[i]]); } else { heap = mp_pairheap_delete(pairheap_lt, heap, &node[-ops[i]]); } if (mp_pairheap_is_empty(pairheap_lt, heap)) { mp_printf(&mp_plat_print, " -"); } else { mp_printf(&mp_plat_print, " %d", mp_pairheap_peek(pairheap_lt, heap) - &node[0]); ; } } mp_printf(&mp_plat_print, "\npop all:"); while (!mp_pairheap_is_empty(pairheap_lt, heap)) { mp_printf(&mp_plat_print, " %d", mp_pairheap_peek(pairheap_lt, heap) - &node[0]); ; heap = mp_pairheap_pop(pairheap_lt, heap); } mp_printf(&mp_plat_print, "\n"); } // function to run extra tests for things that can't be checked by scripts static mp_obj_t extra_coverage(void) { // mp_printf (used by ports that don't have a native printf) { mp_printf(&mp_plat_print, "# mp_printf\n"); mp_printf(&mp_plat_print, "%d %+d % d\n", -123, 123, 123); // sign mp_printf(&mp_plat_print, "%05d\n", -123); // negative number with zero padding mp_printf(&mp_plat_print, "%ld\n", 123); // long mp_printf(&mp_plat_print, "%lx\n", 0x123); // long hex mp_printf(&mp_plat_print, "%X\n", 0x1abcdef); // capital hex mp_printf(&mp_plat_print, "%.2s %.3s '%4.4s' '%5.5q' '%.3q'\n", "abc", "abc", "abc", MP_QSTR_True, MP_QSTR_True); // fixed string precision mp_printf(&mp_plat_print, "%.*s\n", -1, "abc"); // negative string precision mp_printf(&mp_plat_print, "%b %b\n", 0, 1); // bools #ifndef NDEBUG mp_printf(&mp_plat_print, "%s\n", NULL); // null string #else mp_printf(&mp_plat_print, "(null)\n"); // without debugging mp_printf won't check for null #endif mp_printf(&mp_plat_print, "%d\n", 0x80000000); // should print signed mp_printf(&mp_plat_print, "%u\n", 0x80000000); // should print unsigned mp_printf(&mp_plat_print, "%x\n", 0x80000000); // should print unsigned mp_printf(&mp_plat_print, "%X\n", 0x80000000); // should print unsigned mp_printf(&mp_plat_print, "abc\n%"); // string ends in middle of format specifier mp_printf(&mp_plat_print, "%%\n"); // literal % character } // GC { mp_printf(&mp_plat_print, "# GC\n"); // calling gc_free while GC is locked gc_lock(); gc_free(NULL); gc_unlock(); // using gc_realloc to resize to 0, which means free the memory void *p = gc_alloc(4, false); mp_printf(&mp_plat_print, "%p\n", gc_realloc(p, 0, false)); // calling gc_nbytes with a non-heap pointer mp_printf(&mp_plat_print, "%p\n", gc_nbytes(NULL)); } // GC initialisation and allocation stress test, to check the logic behind ALLOC_TABLE_GAP_BYTE // (the following test should fail when ALLOC_TABLE_GAP_BYTE=0) { mp_printf(&mp_plat_print, "# GC part 2\n"); // check the GC is unlocked and save its state assert(MP_STATE_THREAD(gc_lock_depth) == 0); mp_state_mem_t mp_state_mem_orig = mp_state_ctx.mem; // perform the test unsigned heap_size = 64 * MICROPY_BYTES_PER_GC_BLOCK; for (unsigned j = 0; j < 256 * MP_BYTES_PER_OBJ_WORD; ++j) { char *heap = calloc(heap_size, 1); gc_init(heap, heap + heap_size); m_malloc(MICROPY_BYTES_PER_GC_BLOCK); void *o = gc_alloc(MICROPY_BYTES_PER_GC_BLOCK, GC_ALLOC_FLAG_HAS_FINALISER); ((mp_obj_base_t *)o)->type = NULL; // ensure type is cleared so GC doesn't look for finaliser for (unsigned i = 0; i < heap_size / MICROPY_BYTES_PER_GC_BLOCK; ++i) { void *p = m_malloc_maybe(MICROPY_BYTES_PER_GC_BLOCK); if (!p) { break; } *(void **)p = o; o = p; } gc_collect(); free(heap); heap_size += MICROPY_BYTES_PER_GC_BLOCK / 16; } mp_printf(&mp_plat_print, "pass\n"); // restore the GC state (the original heap) mp_state_ctx.mem = mp_state_mem_orig; } // tracked allocation { #define NUM_PTRS (8) #define NUM_BYTES (128) #define FLIP_POINTER(p) ((uint8_t *)((uintptr_t)(p) ^ 0x0f)) mp_printf(&mp_plat_print, "# tracked allocation\n"); mp_printf(&mp_plat_print, "m_tracked_head = %p\n", MP_STATE_VM(m_tracked_head)); uint8_t *ptrs[NUM_PTRS]; // allocate memory blocks for (size_t i = 0; i < NUM_PTRS; ++i) { ptrs[i] = m_tracked_calloc(1, NUM_BYTES); bool all_zero = true; for (size_t j = 0; j < NUM_BYTES; ++j) { if (ptrs[i][j] != 0) { all_zero = false; break; } ptrs[i][j] = j; } mp_printf(&mp_plat_print, "%d %d\n", i, all_zero); // hide the pointer from the GC and collect ptrs[i] = FLIP_POINTER(ptrs[i]); gc_collect(); } // check the memory blocks have the correct content for (size_t i = 0; i < NUM_PTRS; ++i) { bool correct_contents = true; for (size_t j = 0; j < NUM_BYTES; ++j) { if (FLIP_POINTER(ptrs[i])[j] != j) { correct_contents = false; break; } } mp_printf(&mp_plat_print, "%d %d\n", i, correct_contents); } // free the memory blocks for (size_t i = 0; i < NUM_PTRS; ++i) { m_tracked_free(FLIP_POINTER(ptrs[i])); } mp_printf(&mp_plat_print, "m_tracked_head = %p\n", MP_STATE_VM(m_tracked_head)); } // vstr { mp_printf(&mp_plat_print, "# vstr\n"); vstr_t *vstr = vstr_new(16); vstr_hint_size(vstr, 32); vstr_add_str(vstr, "ts"); vstr_ins_byte(vstr, 1, 'e'); vstr_ins_char(vstr, 3, 't'); vstr_ins_char(vstr, 10, 's'); mp_printf(&mp_plat_print, "%.*s\n", (int)vstr->len, vstr->buf); vstr_cut_head_bytes(vstr, 2); mp_printf(&mp_plat_print, "%.*s\n", (int)vstr->len, vstr->buf); vstr_cut_tail_bytes(vstr, 10); mp_printf(&mp_plat_print, "%.*s\n", (int)vstr->len, vstr->buf); vstr_printf(vstr, "t%cst", 'e'); mp_printf(&mp_plat_print, "%.*s\n", (int)vstr->len, vstr->buf); vstr_cut_out_bytes(vstr, 3, 10); mp_printf(&mp_plat_print, "%.*s\n", (int)vstr->len, vstr->buf); VSTR_FIXED(fix, 4); nlr_buf_t nlr; if (nlr_push(&nlr) == 0) { vstr_add_str(&fix, "large"); nlr_pop(); } else { mp_obj_print_exception(&mp_plat_print, MP_OBJ_FROM_PTR(nlr.ret_val)); } fix.len = fix.alloc; if (nlr_push(&nlr) == 0) { vstr_null_terminated_str(&fix); nlr_pop(); } else { mp_obj_print_exception(&mp_plat_print, MP_OBJ_FROM_PTR(nlr.ret_val)); } } // repl autocomplete { mp_printf(&mp_plat_print, "# repl\n"); const char *str; size_t len = mp_repl_autocomplete("__n", 3, &mp_plat_print, &str); // expect "ame__" mp_printf(&mp_plat_print, "%.*s\n", (int)len, str); len = mp_repl_autocomplete("im", 2, &mp_plat_print, &str); // expect "port" mp_printf(&mp_plat_print, "%.*s\n", (int)len, str); mp_repl_autocomplete("import ", 7, &mp_plat_print, &str); // expect the list of builtins len = mp_repl_autocomplete("import ti", 9, &mp_plat_print, &str); // expect "me" mp_printf(&mp_plat_print, "%.*s\n", (int)len, str); mp_repl_autocomplete("import m", 8, &mp_plat_print, &str); // expect "micropython machine math" mp_store_global(MP_QSTR_sys, mp_import_name(MP_QSTR_sys, mp_const_none, MP_OBJ_NEW_SMALL_INT(0))); mp_repl_autocomplete("sys.", 4, &mp_plat_print, &str); // expect dir(sys) len = mp_repl_autocomplete("sys.impl", 8, &mp_plat_print, &str); // expect "ementation" mp_printf(&mp_plat_print, "%.*s\n", (int)len, str); } // attrtuple { mp_printf(&mp_plat_print, "# attrtuple\n"); static const qstr fields[] = {MP_QSTR_start, MP_QSTR_stop, MP_QSTR_step}; static const mp_obj_t items[] = {MP_OBJ_NEW_SMALL_INT(1), MP_OBJ_NEW_SMALL_INT(2), MP_OBJ_NEW_SMALL_INT(3)}; mp_obj_print_helper(&mp_plat_print, mp_obj_new_attrtuple(fields, 3, items), PRINT_REPR); mp_printf(&mp_plat_print, "\n"); } // str { mp_printf(&mp_plat_print, "# str\n"); // intern string mp_printf(&mp_plat_print, "%d\n", mp_obj_is_qstr(mp_obj_str_intern(mp_obj_new_str("intern me", 9)))); } // bytearray { mp_printf(&mp_plat_print, "# bytearray\n"); // create a bytearray via mp_obj_new_bytearray mp_buffer_info_t bufinfo; mp_get_buffer_raise(mp_obj_new_bytearray(4, "data"), &bufinfo, MP_BUFFER_RW); mp_printf(&mp_plat_print, "%.*s\n", bufinfo.len, bufinfo.buf); } // mpz { mp_printf(&mp_plat_print, "# mpz\n"); mp_uint_t value; mpz_t mpz; mpz_init_zero(&mpz); // mpz_as_uint_checked, with success mpz_set_from_int(&mpz, 12345678); mp_printf(&mp_plat_print, "%d\n", mpz_as_uint_checked(&mpz, &value)); mp_printf(&mp_plat_print, "%d\n", (int)value); // mpz_as_uint_checked, with negative arg mpz_set_from_int(&mpz, -1); mp_printf(&mp_plat_print, "%d\n", mpz_as_uint_checked(&mpz, &value)); // mpz_as_uint_checked, with overflowing arg mpz_set_from_int(&mpz, 1); mpz_shl_inpl(&mpz, &mpz, 70); mp_printf(&mp_plat_print, "%d\n", mpz_as_uint_checked(&mpz, &value)); // mpz_set_from_float with inf as argument mpz_set_from_float(&mpz, 1.0 / 0.0); mpz_as_uint_checked(&mpz, &value); mp_printf(&mp_plat_print, "%d\n", (int)value); // mpz_set_from_float with 0 as argument mpz_set_from_float(&mpz, 0); mpz_as_uint_checked(&mpz, &value); mp_printf(&mp_plat_print, "%d\n", (int)value); // mpz_set_from_float with 0fun_bc = &fun_bc; code_state->ip = (const byte *)"\x00"; // just needed for an invalid opcode code_state->sp = &code_state->state[0]; code_state->exc_sp_idx = 0; code_state->old_globals = NULL; mp_vm_return_kind_t ret = mp_execute_bytecode(code_state, MP_OBJ_NULL); mp_printf(&mp_plat_print, "%d %d\n", ret, mp_obj_get_type(code_state->state[0]) == &mp_type_NotImplementedError); } // scheduler { mp_printf(&mp_plat_print, "# scheduler\n"); // lock scheduler mp_sched_lock(); // schedule multiple callbacks; last one should fail for (int i = 0; i < 5; ++i) { mp_printf(&mp_plat_print, "sched(%d)=%d\n", i, mp_sched_schedule(MP_OBJ_FROM_PTR(&mp_builtin_print_obj), MP_OBJ_NEW_SMALL_INT(i))); } // test nested locking/unlocking mp_sched_lock(); mp_sched_unlock(); // shouldn't do anything while scheduler is locked mp_handle_pending(true); // unlock scheduler mp_sched_unlock(); mp_printf(&mp_plat_print, "unlocked\n"); // drain pending callbacks, and test mp_event_wait_indefinite(), mp_event_wait_ms() mp_event_wait_indefinite(); // the unix port only waits 500us in this call while (mp_sched_num_pending()) { mp_event_wait_ms(1); } // setting the keyboard interrupt and raising it during mp_handle_pending mp_sched_keyboard_interrupt(); nlr_buf_t nlr; if (nlr_push(&nlr) == 0) { mp_handle_pending(true); nlr_pop(); } else { mp_obj_print_exception(&mp_plat_print, MP_OBJ_FROM_PTR(nlr.ret_val)); } // setting the keyboard interrupt (twice) and cancelling it during mp_handle_pending mp_sched_keyboard_interrupt(); mp_sched_keyboard_interrupt(); mp_handle_pending(false); // setting keyboard interrupt and a pending event (intr should be handled first) mp_sched_schedule(MP_OBJ_FROM_PTR(&mp_builtin_print_obj), MP_OBJ_NEW_SMALL_INT(10)); mp_sched_keyboard_interrupt(); if (nlr_push(&nlr) == 0) { mp_handle_pending(true); nlr_pop(); } else { mp_obj_print_exception(&mp_plat_print, MP_OBJ_FROM_PTR(nlr.ret_val)); } mp_handle_pending(true); } // ringbuf { byte buf[100]; ringbuf_t ringbuf = {buf, sizeof(buf), 0, 0}; mp_printf(&mp_plat_print, "# ringbuf\n"); // Single-byte put/get with empty ringbuf. mp_printf(&mp_plat_print, "%d %d\n", ringbuf_free(&ringbuf), ringbuf_avail(&ringbuf)); ringbuf_put(&ringbuf, 22); mp_printf(&mp_plat_print, "%d %d\n", ringbuf_free(&ringbuf), ringbuf_avail(&ringbuf)); mp_printf(&mp_plat_print, "%d\n", ringbuf_get(&ringbuf)); mp_printf(&mp_plat_print, "%d %d\n", ringbuf_free(&ringbuf), ringbuf_avail(&ringbuf)); // Two-byte put/get with empty ringbuf. ringbuf_put16(&ringbuf, 0xaa55); mp_printf(&mp_plat_print, "%d %d\n", ringbuf_free(&ringbuf), ringbuf_avail(&ringbuf)); mp_printf(&mp_plat_print, "%04x\n", ringbuf_get16(&ringbuf)); mp_printf(&mp_plat_print, "%d %d\n", ringbuf_free(&ringbuf), ringbuf_avail(&ringbuf)); // Two-byte put with full ringbuf. for (int i = 0; i < 99; ++i) { ringbuf_put(&ringbuf, i); } mp_printf(&mp_plat_print, "%d %d\n", ringbuf_free(&ringbuf), ringbuf_avail(&ringbuf)); mp_printf(&mp_plat_print, "%d\n", ringbuf_put16(&ringbuf, 0x11bb)); // Two-byte put with one byte free. ringbuf_get(&ringbuf); mp_printf(&mp_plat_print, "%d %d\n", ringbuf_free(&ringbuf), ringbuf_avail(&ringbuf)); mp_printf(&mp_plat_print, "%d\n", ringbuf_put16(&ringbuf, 0x3377)); ringbuf_get(&ringbuf); mp_printf(&mp_plat_print, "%d %d\n", ringbuf_free(&ringbuf), ringbuf_avail(&ringbuf)); mp_printf(&mp_plat_print, "%d\n", ringbuf_put16(&ringbuf, 0xcc99)); for (int i = 0; i < 97; ++i) { ringbuf_get(&ringbuf); } mp_printf(&mp_plat_print, "%04x\n", ringbuf_get16(&ringbuf)); mp_printf(&mp_plat_print, "%d %d\n", ringbuf_free(&ringbuf), ringbuf_avail(&ringbuf)); // Two-byte put with wrap around on first byte: ringbuf.iput = 0; ringbuf.iget = 0; for (int i = 0; i < 99; ++i) { ringbuf_put(&ringbuf, i); ringbuf_get(&ringbuf); } mp_printf(&mp_plat_print, "%d\n", ringbuf_put16(&ringbuf, 0x11bb)); mp_printf(&mp_plat_print, "%04x\n", ringbuf_get16(&ringbuf)); // Two-byte put with wrap around on second byte: ringbuf.iput = 0; ringbuf.iget = 0; for (int i = 0; i < 98; ++i) { ringbuf_put(&ringbuf, i); ringbuf_get(&ringbuf); } mp_printf(&mp_plat_print, "%d\n", ringbuf_put16(&ringbuf, 0x22ff)); mp_printf(&mp_plat_print, "%04x\n", ringbuf_get16(&ringbuf)); // Two-byte get from empty ringbuf. ringbuf.iput = 0; ringbuf.iget = 0; mp_printf(&mp_plat_print, "%d\n", ringbuf_get16(&ringbuf)); // Two-byte get from ringbuf with one byte available. ringbuf.iput = 0; ringbuf.iget = 0; ringbuf_put(&ringbuf, 0xaa); mp_printf(&mp_plat_print, "%d\n", ringbuf_get16(&ringbuf)); } // pairheap { mp_printf(&mp_plat_print, "# pairheap\n"); // Basic case. int t0[] = {0, 2, 1, 3}; pairheap_test(MP_ARRAY_SIZE(t0), t0); // All pushed in reverse order. int t1[] = {7, 6, 5, 4, 3, 2, 1, 0}; pairheap_test(MP_ARRAY_SIZE(t1), t1); // Basic deletion. int t2[] = {1, -1, -1, 1, 2, -2, 2, 3, -3}; pairheap_test(MP_ARRAY_SIZE(t2), t2); // Deletion of first child that has next node (the -3). int t3[] = {1, 2, 3, 4, -1, -3}; pairheap_test(MP_ARRAY_SIZE(t3), t3); // Deletion of node that's not first child (the -2). int t4[] = {1, 2, 3, 4, -2}; pairheap_test(MP_ARRAY_SIZE(t4), t4); // Deletion of node that's not first child and has children (the -3). int t5[] = {3, 4, 5, 1, 2, -3}; pairheap_test(MP_ARRAY_SIZE(t5), t5); } // mp_obj_is_type and derivatives { mp_printf(&mp_plat_print, "# mp_obj_is_type\n"); // mp_obj_is_bool accepts only booleans mp_printf(&mp_plat_print, "%d %d\n", mp_obj_is_bool(mp_const_true), mp_obj_is_bool(mp_const_false)); mp_printf(&mp_plat_print, "%d %d\n", mp_obj_is_bool(MP_OBJ_NEW_SMALL_INT(1)), mp_obj_is_bool(mp_const_none)); // mp_obj_is_integer accepts ints and booleans mp_printf(&mp_plat_print, "%d %d\n", mp_obj_is_integer(MP_OBJ_NEW_SMALL_INT(1)), mp_obj_is_integer(mp_obj_new_int_from_ll(1))); mp_printf(&mp_plat_print, "%d %d\n", mp_obj_is_integer(mp_const_true), mp_obj_is_integer(mp_const_false)); mp_printf(&mp_plat_print, "%d %d\n", mp_obj_is_integer(mp_obj_new_str("1", 1)), mp_obj_is_integer(mp_const_none)); // mp_obj_is_int accepts small int and object ints mp_printf(&mp_plat_print, "%d %d\n", mp_obj_is_int(MP_OBJ_NEW_SMALL_INT(1)), mp_obj_is_int(mp_obj_new_int_from_ll(1))); } mp_printf(&mp_plat_print, "# end coverage.c\n"); mp_obj_streamtest_t *s = mp_obj_malloc(mp_obj_streamtest_t, &mp_type_stest_fileio); s->buf = NULL; s->len = 0; s->pos = 0; s->error_code = 0; mp_obj_streamtest_t *s2 = mp_obj_malloc(mp_obj_streamtest_t, &mp_type_stest_textio2); // return a tuple of data for testing on the Python side mp_obj_t items[] = {(mp_obj_t)&str_no_hash_obj, (mp_obj_t)&bytes_no_hash_obj, MP_OBJ_FROM_PTR(s), MP_OBJ_FROM_PTR(s2)}; return mp_obj_new_tuple(MP_ARRAY_SIZE(items), items); } MP_DEFINE_CONST_FUN_OBJ_0(extra_coverage_obj, extra_coverage); #endif