/* * This file is part of the MicroPython project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2013-2019 Damien P. George * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include #include "py/runtime.h" #include "py/mphal.h" #include "lib/oofatfs/ff.h" #include "extmod/vfs_fat.h" #include "sdcard.h" #include "pin.h" #include "pin_static_af.h" #include "bufhelper.h" #include "dma.h" #include "irq.h" #if MICROPY_HW_ENABLE_SDCARD || MICROPY_HW_ENABLE_MMCARD #if defined(STM32F7) || defined(STM32H5) || defined(STM32H7) || defined(STM32L4) // The H7/F7/L4 have 2 SDMMC peripherals, but at the moment this driver only supports // using one of them in a given build, selected by MICROPY_HW_SDCARD_SDMMC. #if MICROPY_HW_SDCARD_SDMMC == 2 #define SDIO SDMMC2 #define SDMMC_IRQHandler SDMMC2_IRQHandler #define SDMMC_CLK_ENABLE() __HAL_RCC_SDMMC2_CLK_ENABLE() #define SDMMC_CLK_DISABLE() __HAL_RCC_SDMMC2_CLK_DISABLE() #define SDMMC_FORCE_RESET() __HAL_RCC_SDMMC2_FORCE_RESET() #define SDMMC_RELEASE_RESET() __HAL_RCC_SDMMC2_RELEASE_RESET() #define SDMMC_IRQn SDMMC2_IRQn #define SDMMC_DMA dma_SDMMC_2 #define STATIC_AF_SDCARD_CK STATIC_AF_SDMMC2_CK #define STATIC_AF_SDCARD_CMD STATIC_AF_SDMMC2_CMD #define STATIC_AF_SDCARD_D0 STATIC_AF_SDMMC2_D0 #define STATIC_AF_SDCARD_D1 STATIC_AF_SDMMC2_D1 #define STATIC_AF_SDCARD_D2 STATIC_AF_SDMMC2_D2 #define STATIC_AF_SDCARD_D3 STATIC_AF_SDMMC2_D3 #define STATIC_AF_SDCARD_D4 STATIC_AF_SDMMC2_D4 #define STATIC_AF_SDCARD_D5 STATIC_AF_SDMMC2_D5 #define STATIC_AF_SDCARD_D6 STATIC_AF_SDMMC2_D6 #define STATIC_AF_SDCARD_D7 STATIC_AF_SDMMC2_D7 #else #define SDIO SDMMC1 #define SDMMC_IRQHandler SDMMC1_IRQHandler #define SDMMC_CLK_ENABLE() __HAL_RCC_SDMMC1_CLK_ENABLE() #define SDMMC_CLK_DISABLE() __HAL_RCC_SDMMC1_CLK_DISABLE() #define SDMMC_FORCE_RESET() __HAL_RCC_SDMMC1_FORCE_RESET() #define SDMMC_RELEASE_RESET() __HAL_RCC_SDMMC1_RELEASE_RESET() #define SDMMC_IRQn SDMMC1_IRQn #define SDMMC_DMA dma_SDIO_0 #define STATIC_AF_SDCARD_CK STATIC_AF_SDMMC1_CK #define STATIC_AF_SDCARD_CMD STATIC_AF_SDMMC1_CMD #define STATIC_AF_SDCARD_D0 STATIC_AF_SDMMC1_D0 #define STATIC_AF_SDCARD_D1 STATIC_AF_SDMMC1_D1 #define STATIC_AF_SDCARD_D2 STATIC_AF_SDMMC1_D2 #define STATIC_AF_SDCARD_D3 STATIC_AF_SDMMC1_D3 #define STATIC_AF_SDCARD_D4 STATIC_AF_SDMMC1_D4 #define STATIC_AF_SDCARD_D5 STATIC_AF_SDMMC1_D5 #define STATIC_AF_SDCARD_D6 STATIC_AF_SDMMC1_D6 #define STATIC_AF_SDCARD_D7 STATIC_AF_SDMMC1_D7 #endif // The F7 & L4 series calls the peripheral SDMMC rather than SDIO, so provide some // #defines for backwards compatibility. #define SDIO_CLOCK_EDGE_RISING SDMMC_CLOCK_EDGE_RISING #define SDIO_CLOCK_EDGE_FALLING SDMMC_CLOCK_EDGE_FALLING #define SDIO_CLOCK_BYPASS_DISABLE SDMMC_CLOCK_BYPASS_DISABLE #define SDIO_CLOCK_BYPASS_ENABLE SDMMC_CLOCK_BYPASS_ENABLE #define SDIO_CLOCK_POWER_SAVE_DISABLE SDMMC_CLOCK_POWER_SAVE_DISABLE #define SDIO_CLOCK_POWER_SAVE_ENABLE SDMMC_CLOCK_POWER_SAVE_ENABLE #define SDIO_BUS_WIDE_1B SDMMC_BUS_WIDE_1B #define SDIO_BUS_WIDE_4B SDMMC_BUS_WIDE_4B #define SDIO_BUS_WIDE_8B SDMMC_BUS_WIDE_8B #define SDIO_HARDWARE_FLOW_CONTROL_DISABLE SDMMC_HARDWARE_FLOW_CONTROL_DISABLE #define SDIO_HARDWARE_FLOW_CONTROL_ENABLE SDMMC_HARDWARE_FLOW_CONTROL_ENABLE #if defined(STM32H5) || defined(STM32H7) #define SDIO_TRANSFER_CLK_DIV SDMMC_NSpeed_CLK_DIV #define SDIO_USE_GPDMA 0 #else #define SDIO_TRANSFER_CLK_DIV SDMMC_TRANSFER_CLK_DIV #define SDIO_USE_GPDMA 1 #endif #else // These are definitions for F4 MCUs so there is a common macro across all MCUs. #define SDMMC_CLK_ENABLE() __SDIO_CLK_ENABLE() #define SDMMC_CLK_DISABLE() __SDIO_CLK_DISABLE() #define SDMMC_IRQn SDIO_IRQn #define SDMMC_IRQHandler SDIO_IRQHandler #define SDMMC_DMA dma_SDIO_0 #define SDIO_USE_GPDMA 1 #define STATIC_AF_SDCARD_CK STATIC_AF_SDIO_CK #define STATIC_AF_SDCARD_CMD STATIC_AF_SDIO_CMD #define STATIC_AF_SDCARD_D0 STATIC_AF_SDIO_D0 #define STATIC_AF_SDCARD_D1 STATIC_AF_SDIO_D1 #define STATIC_AF_SDCARD_D2 STATIC_AF_SDIO_D2 #define STATIC_AF_SDCARD_D3 STATIC_AF_SDIO_D3 #define STATIC_AF_SDCARD_D4 STATIC_AF_SDIO_D4 #define STATIC_AF_SDCARD_D5 STATIC_AF_SDIO_D5 #define STATIC_AF_SDCARD_D6 STATIC_AF_SDIO_D6 #define STATIC_AF_SDCARD_D7 STATIC_AF_SDIO_D7 #endif // If no custom SDIO pins defined, use the default ones #ifndef MICROPY_HW_SDCARD_CK #define MICROPY_HW_SDCARD_D0 (pin_C8) #define MICROPY_HW_SDCARD_D1 (pin_C9) #define MICROPY_HW_SDCARD_D2 (pin_C10) #define MICROPY_HW_SDCARD_D3 (pin_C11) #define MICROPY_HW_SDCARD_CK (pin_C12) #define MICROPY_HW_SDCARD_CMD (pin_D2) #endif // Define a constant to select the bus width. #if MICROPY_HW_SDCARD_BUS_WIDTH == 4 #define SDIO_BUS_WIDE_VALUE SDIO_BUS_WIDE_4B #elif MICROPY_HW_SDCARD_BUS_WIDTH == 8 #define SDIO_BUS_WIDE_VALUE SDIO_BUS_WIDE_8B #endif #define PYB_SDMMC_FLAG_SD (0x01) #define PYB_SDMMC_FLAG_MMC (0x02) #define PYB_SDMMC_FLAG_ACTIVE (0x04) static uint8_t pyb_sdmmc_flags; // TODO: I think that as an optimization, we can allocate these dynamically // if an sd card is detected. This will save approx 260 bytes of RAM // when no sdcard was being used. static union { SD_HandleTypeDef sd; #if MICROPY_HW_ENABLE_MMCARD MMC_HandleTypeDef mmc; #endif } sdmmc_handle; void sdcard_init(void) { // Set SD/MMC to no mode and inactive pyb_sdmmc_flags = 0; // configure SD GPIO // we do this here an not in HAL_SD_MspInit because it apparently // makes it more robust to have the pins always pulled high // Note: the mp_hal_pin_config function will configure the GPIO in // fast mode which can do up to 50MHz. This should be plenty for SDIO // which clocks up to 25MHz maximum. mp_hal_pin_config_alt_static(MICROPY_HW_SDCARD_CK, MP_HAL_PIN_MODE_ALT, MP_HAL_PIN_PULL_UP, STATIC_AF_SDCARD_CK); mp_hal_pin_config_alt_static(MICROPY_HW_SDCARD_CMD, MP_HAL_PIN_MODE_ALT, MP_HAL_PIN_PULL_UP, STATIC_AF_SDCARD_CMD); mp_hal_pin_config_alt_static(MICROPY_HW_SDCARD_D0, MP_HAL_PIN_MODE_ALT, MP_HAL_PIN_PULL_UP, STATIC_AF_SDCARD_D0); #if MICROPY_HW_SDCARD_BUS_WIDTH >= 4 mp_hal_pin_config_alt_static(MICROPY_HW_SDCARD_D1, MP_HAL_PIN_MODE_ALT, MP_HAL_PIN_PULL_UP, STATIC_AF_SDCARD_D1); mp_hal_pin_config_alt_static(MICROPY_HW_SDCARD_D2, MP_HAL_PIN_MODE_ALT, MP_HAL_PIN_PULL_UP, STATIC_AF_SDCARD_D2); mp_hal_pin_config_alt_static(MICROPY_HW_SDCARD_D3, MP_HAL_PIN_MODE_ALT, MP_HAL_PIN_PULL_UP, STATIC_AF_SDCARD_D3); #if MICROPY_HW_SDCARD_BUS_WIDTH == 8 mp_hal_pin_config_alt_static(MICROPY_HW_SDCARD_D4, MP_HAL_PIN_MODE_ALT, MP_HAL_PIN_PULL_UP, STATIC_AF_SDCARD_D4); mp_hal_pin_config_alt_static(MICROPY_HW_SDCARD_D5, MP_HAL_PIN_MODE_ALT, MP_HAL_PIN_PULL_UP, STATIC_AF_SDCARD_D5); mp_hal_pin_config_alt_static(MICROPY_HW_SDCARD_D6, MP_HAL_PIN_MODE_ALT, MP_HAL_PIN_PULL_UP, STATIC_AF_SDCARD_D6); mp_hal_pin_config_alt_static(MICROPY_HW_SDCARD_D7, MP_HAL_PIN_MODE_ALT, MP_HAL_PIN_PULL_UP, STATIC_AF_SDCARD_D7); #endif #endif // configure the SD card detect pin // we do this here so we can detect if the SD card is inserted before powering it on #if defined(MICROPY_HW_SDCARD_DETECT_PIN) mp_hal_pin_config(MICROPY_HW_SDCARD_DETECT_PIN, MP_HAL_PIN_MODE_INPUT, MICROPY_HW_SDCARD_DETECT_PULL, 0); #endif } void sdcard_select_sd(void) { pyb_sdmmc_flags |= PYB_SDMMC_FLAG_SD; } void sdcard_select_mmc(void) { pyb_sdmmc_flags |= PYB_SDMMC_FLAG_MMC; } static void sdmmc_msp_init(void) { // enable SDIO clock SDMMC_CLK_ENABLE(); #if defined(STM32H7) // Reset SDMMC SDMMC_FORCE_RESET(); SDMMC_RELEASE_RESET(); #endif // NVIC configuration for SDIO interrupts NVIC_SetPriority(SDMMC_IRQn, IRQ_PRI_SDIO); HAL_NVIC_EnableIRQ(SDMMC_IRQn); // GPIO have already been initialised by sdcard_init } void sdmmc_msp_deinit(void) { HAL_NVIC_DisableIRQ(SDMMC_IRQn); SDMMC_CLK_DISABLE(); } #if MICROPY_HW_ENABLE_SDCARD void HAL_SD_MspInit(SD_HandleTypeDef *hsd) { sdmmc_msp_init(); } void HAL_SD_MspDeInit(SD_HandleTypeDef *hsd) { sdmmc_msp_deinit(); } #endif #if MICROPY_HW_ENABLE_MMCARD void HAL_MMC_MspInit(MMC_HandleTypeDef *hsd) { sdmmc_msp_init(); } void HAL_MMC_MspDeInit(MMC_HandleTypeDef *hsd) { sdmmc_msp_deinit(); } #endif bool sdcard_is_present(void) { #if MICROPY_HW_ENABLE_MMCARD if (pyb_sdmmc_flags & PYB_SDMMC_FLAG_MMC) { return false; } #endif #if defined(MICROPY_HW_SDCARD_DETECT_PIN) return mp_hal_pin_read(MICROPY_HW_SDCARD_DETECT_PIN) == MICROPY_HW_SDCARD_DETECT_PRESENT; #else return true; #endif } #if MICROPY_HW_ENABLE_SDCARD static HAL_StatusTypeDef sdmmc_init_sd(void) { // SD device interface configuration sdmmc_handle.sd.Instance = SDIO; sdmmc_handle.sd.Init.ClockEdge = SDIO_CLOCK_EDGE_RISING; #if !defined(STM32H5) && !defined(STM32H7) sdmmc_handle.sd.Init.ClockBypass = SDIO_CLOCK_BYPASS_DISABLE; #endif sdmmc_handle.sd.Init.ClockPowerSave = SDIO_CLOCK_POWER_SAVE_ENABLE; sdmmc_handle.sd.Init.BusWide = SDIO_BUS_WIDE_1B; sdmmc_handle.sd.Init.HardwareFlowControl = SDIO_HARDWARE_FLOW_CONTROL_DISABLE; sdmmc_handle.sd.Init.ClockDiv = SDIO_TRANSFER_CLK_DIV; // init the SD interface, with retry if it's not ready yet HAL_StatusTypeDef status; for (int retry = 10; (status = HAL_SD_Init(&sdmmc_handle.sd)) != HAL_OK; retry--) { if (retry == 0) { return status; } mp_hal_delay_ms(50); } #if MICROPY_HW_SDCARD_BUS_WIDTH >= 4 // configure the SD bus width for 4/8-bit wide operation status = HAL_SD_ConfigWideBusOperation(&sdmmc_handle.sd, SDIO_BUS_WIDE_VALUE); if (status != HAL_OK) { HAL_SD_DeInit(&sdmmc_handle.sd); return status; } #endif return HAL_OK; } #endif #if MICROPY_HW_ENABLE_MMCARD static HAL_StatusTypeDef sdmmc_init_mmc(void) { // MMC device interface configuration sdmmc_handle.mmc.Instance = SDIO; sdmmc_handle.mmc.Init.ClockEdge = SDIO_CLOCK_EDGE_RISING; #ifndef STM32H7 sdmmc_handle.mmc.Init.ClockBypass = SDIO_CLOCK_BYPASS_DISABLE; #endif sdmmc_handle.mmc.Init.ClockPowerSave = SDIO_CLOCK_POWER_SAVE_ENABLE; sdmmc_handle.mmc.Init.BusWide = SDIO_BUS_WIDE_1B; sdmmc_handle.mmc.Init.HardwareFlowControl = SDIO_HARDWARE_FLOW_CONTROL_DISABLE; sdmmc_handle.mmc.Init.ClockDiv = SDIO_TRANSFER_CLK_DIV; // Init the SDIO interface HAL_StatusTypeDef status = HAL_MMC_Init(&sdmmc_handle.mmc); if (status != HAL_OK) { return status; } #ifdef MICROPY_HW_MMCARD_LOG_BLOCK_NBR // A board can override the number of logical blocks (card capacity) if needed. // This is needed when a card is high capacity because the extended CSD command // is not supported by the current version of the HAL. sdmmc_handle.mmc.MmcCard.LogBlockNbr = MICROPY_HW_MMCARD_LOG_BLOCK_NBR; #endif #if MICROPY_HW_SDCARD_BUS_WIDTH >= 4 // Configure the SDIO bus width for 4/8-bit wide operation #ifdef STM32F7 sdmmc_handle.mmc.Init.ClockBypass = SDIO_CLOCK_BYPASS_ENABLE; #endif status = HAL_MMC_ConfigWideBusOperation(&sdmmc_handle.mmc, SDIO_BUS_WIDE_VALUE); if (status != HAL_OK) { HAL_MMC_DeInit(&sdmmc_handle.mmc); return status; } #endif return HAL_OK; } #endif bool sdcard_power_on(void) { if (pyb_sdmmc_flags & PYB_SDMMC_FLAG_ACTIVE) { return true; } #ifdef MICROPY_BOARD_SDCARD_POWER MICROPY_BOARD_SDCARD_POWER #endif HAL_StatusTypeDef status = HAL_ERROR; switch (pyb_sdmmc_flags) { #if MICROPY_HW_ENABLE_SDCARD case PYB_SDMMC_FLAG_SD: if (sdcard_is_present()) { status = sdmmc_init_sd(); } break; #endif #if MICROPY_HW_ENABLE_MMCARD case PYB_SDMMC_FLAG_MMC: status = sdmmc_init_mmc(); break; #endif } if (status == HAL_OK) { pyb_sdmmc_flags |= PYB_SDMMC_FLAG_ACTIVE; return true; } else { return false; } } void sdcard_power_off(void) { switch (pyb_sdmmc_flags) { #if MICROPY_HW_ENABLE_SDCARD case PYB_SDMMC_FLAG_ACTIVE | PYB_SDMMC_FLAG_SD: HAL_SD_DeInit(&sdmmc_handle.sd); break; #endif #if MICROPY_HW_ENABLE_MMCARD case PYB_SDMMC_FLAG_ACTIVE | PYB_SDMMC_FLAG_MMC: HAL_MMC_DeInit(&sdmmc_handle.mmc); break; #endif } pyb_sdmmc_flags &= ~PYB_SDMMC_FLAG_ACTIVE; } uint64_t sdcard_get_capacity_in_bytes(void) { switch (pyb_sdmmc_flags) { #if MICROPY_HW_ENABLE_SDCARD case PYB_SDMMC_FLAG_ACTIVE | PYB_SDMMC_FLAG_SD: { HAL_SD_CardInfoTypeDef cardinfo; HAL_SD_GetCardInfo(&sdmmc_handle.sd, &cardinfo); return (uint64_t)cardinfo.LogBlockNbr * (uint64_t)cardinfo.LogBlockSize; } #endif #if MICROPY_HW_ENABLE_MMCARD case PYB_SDMMC_FLAG_ACTIVE | PYB_SDMMC_FLAG_MMC: { HAL_MMC_CardInfoTypeDef cardinfo; HAL_MMC_GetCardInfo(&sdmmc_handle.mmc, &cardinfo); return (uint64_t)cardinfo.LogBlockNbr * (uint64_t)cardinfo.LogBlockSize; } #endif default: return 0; } } static void sdmmc_irq_handler(void) { switch (pyb_sdmmc_flags) { #if MICROPY_HW_ENABLE_SDCARD case PYB_SDMMC_FLAG_ACTIVE | PYB_SDMMC_FLAG_SD: HAL_SD_IRQHandler(&sdmmc_handle.sd); break; #endif #if MICROPY_HW_ENABLE_MMCARD case PYB_SDMMC_FLAG_ACTIVE | PYB_SDMMC_FLAG_MMC: HAL_MMC_IRQHandler(&sdmmc_handle.mmc); break; #endif } } void SDMMC_IRQHandler(void) { IRQ_ENTER(SDMMC_IRQn); sdmmc_irq_handler(); IRQ_EXIT(SDMMC_IRQn); } static void sdcard_reset_periph(void) { // Fully reset the SDMMC peripheral before calling HAL SD DMA functions. // (There could be an outstanding DTIMEOUT event from a previous call and the // HAL function enables IRQs before fully configuring the SDMMC peripheral.) SDIO->DTIMER = 0; SDIO->DLEN = 0; SDIO->DCTRL = 0; SDIO->ICR = SDMMC_STATIC_FLAGS; } static HAL_StatusTypeDef sdcard_wait_finished(uint32_t timeout) { // Wait for HAL driver to be ready (eg for DMA to finish) uint32_t start = HAL_GetTick(); for (;;) { // Do an atomic check of the state; WFI will exit even if IRQs are disabled uint32_t irq_state = disable_irq(); #if MICROPY_HW_ENABLE_MMCARD if (pyb_sdmmc_flags & PYB_SDMMC_FLAG_MMC) { if (sdmmc_handle.mmc.State != HAL_MMC_STATE_BUSY) { enable_irq(irq_state); break; } } else #endif { if (sdmmc_handle.sd.State != HAL_SD_STATE_BUSY) { enable_irq(irq_state); break; } } __WFI(); enable_irq(irq_state); if (HAL_GetTick() - start >= timeout) { return HAL_TIMEOUT; } } // Wait for SD card to complete the operation for (;;) { uint32_t state; #if MICROPY_HW_ENABLE_MMCARD MP_STATIC_ASSERT((uint32_t)HAL_SD_CARD_TRANSFER == (uint32_t)HAL_MMC_CARD_TRANSFER); MP_STATIC_ASSERT((uint32_t)HAL_SD_CARD_SENDING == (uint32_t)HAL_MMC_CARD_SENDING); MP_STATIC_ASSERT((uint32_t)HAL_SD_CARD_RECEIVING == (uint32_t)HAL_MMC_CARD_RECEIVING); MP_STATIC_ASSERT((uint32_t)HAL_SD_CARD_PROGRAMMING == (uint32_t)HAL_MMC_CARD_PROGRAMMING); if (pyb_sdmmc_flags & PYB_SDMMC_FLAG_MMC) { state = HAL_MMC_GetCardState(&sdmmc_handle.mmc); } else #endif { state = HAL_SD_GetCardState(&sdmmc_handle.sd); } if (state == HAL_SD_CARD_TRANSFER) { return HAL_OK; } if (!(state == HAL_SD_CARD_SENDING || state == HAL_SD_CARD_RECEIVING || state == HAL_SD_CARD_PROGRAMMING)) { return HAL_ERROR; } if (HAL_GetTick() - start >= timeout) { return HAL_TIMEOUT; } __WFI(); } return HAL_OK; } mp_uint_t sdcard_read_blocks(uint8_t *dest, uint32_t block_num, uint32_t num_blocks) { // check that SD card is initialised if (!(pyb_sdmmc_flags & PYB_SDMMC_FLAG_ACTIVE)) { return HAL_ERROR; } HAL_StatusTypeDef err = HAL_OK; // check that dest pointer is aligned on a 4-byte boundary uint8_t *orig_dest = NULL; uint32_t saved_word; if (((uint32_t)dest & 3) != 0) { // Pointer is not aligned so it needs fixing. // We could allocate a temporary block of RAM (as sdcard_write_blocks // does) but instead we are going to use the dest buffer inplace. We // are going to align the pointer, save the initial word at the aligned // location, read into the aligned memory, move the memory back to the // unaligned location, then restore the initial bytes at the aligned // location. We should have no trouble doing this as those initial // bytes at the aligned location should be able to be changed for the // duration of this function call. orig_dest = dest; dest = (uint8_t *)((uint32_t)dest & ~3); saved_word = *(uint32_t *)dest; } if (query_irq() == IRQ_STATE_ENABLED) { // we must disable USB irqs to prevent MSC contention with SD card uint32_t basepri = raise_irq_pri(IRQ_PRI_OTG_FS); #if SDIO_USE_GPDMA DMA_HandleTypeDef sd_dma; dma_init(&sd_dma, &SDMMC_DMA, DMA_PERIPH_TO_MEMORY, &sdmmc_handle); #if MICROPY_HW_ENABLE_MMCARD if (pyb_sdmmc_flags & PYB_SDMMC_FLAG_MMC) { sdmmc_handle.mmc.hdmarx = &sd_dma; } else #endif { sdmmc_handle.sd.hdmarx = &sd_dma; } #endif // make sure cache is flushed and invalidated so when DMA updates the RAM // from reading the peripheral the CPU then reads the new data MP_HAL_CLEANINVALIDATE_DCACHE(dest, num_blocks * SDCARD_BLOCK_SIZE); sdcard_reset_periph(); #if MICROPY_HW_ENABLE_MMCARD if (pyb_sdmmc_flags & PYB_SDMMC_FLAG_MMC) { err = HAL_MMC_ReadBlocks_DMA(&sdmmc_handle.mmc, dest, block_num, num_blocks); } else #endif { err = HAL_SD_ReadBlocks_DMA(&sdmmc_handle.sd, dest, block_num, num_blocks); } if (err == HAL_OK) { err = sdcard_wait_finished(60000); } #if SDIO_USE_GPDMA dma_deinit(&SDMMC_DMA); #if MICROPY_HW_ENABLE_MMCARD if (pyb_sdmmc_flags & PYB_SDMMC_FLAG_MMC) { sdmmc_handle.mmc.hdmarx = NULL; } else #endif { sdmmc_handle.sd.hdmarx = NULL; } #endif restore_irq_pri(basepri); } else { #if MICROPY_HW_ENABLE_MMCARD if (pyb_sdmmc_flags & PYB_SDMMC_FLAG_MMC) { err = HAL_MMC_ReadBlocks(&sdmmc_handle.mmc, dest, block_num, num_blocks, 60000); } else #endif { err = HAL_SD_ReadBlocks(&sdmmc_handle.sd, dest, block_num, num_blocks, 60000); } if (err == HAL_OK) { err = sdcard_wait_finished(60000); } } if (orig_dest != NULL) { // move the read data to the non-aligned position, and restore the initial bytes memmove(orig_dest, dest, num_blocks * SDCARD_BLOCK_SIZE); memcpy(dest, &saved_word, orig_dest - dest); } return err; } mp_uint_t sdcard_write_blocks(const uint8_t *src, uint32_t block_num, uint32_t num_blocks) { // check that SD card is initialised if (!(pyb_sdmmc_flags & PYB_SDMMC_FLAG_ACTIVE)) { return HAL_ERROR; } HAL_StatusTypeDef err = HAL_OK; // check that src pointer is aligned on a 4-byte boundary if (((uint32_t)src & 3) != 0) { // pointer is not aligned, so allocate a temporary block to do the write uint8_t *src_aligned = m_new_maybe(uint8_t, SDCARD_BLOCK_SIZE); if (src_aligned == NULL) { return HAL_ERROR; } for (size_t i = 0; i < num_blocks; ++i) { memcpy(src_aligned, src + i * SDCARD_BLOCK_SIZE, SDCARD_BLOCK_SIZE); err = sdcard_write_blocks(src_aligned, block_num + i, 1); if (err != HAL_OK) { break; } } m_del(uint8_t, src_aligned, SDCARD_BLOCK_SIZE); return err; } if (query_irq() == IRQ_STATE_ENABLED) { // we must disable USB irqs to prevent MSC contention with SD card uint32_t basepri = raise_irq_pri(IRQ_PRI_OTG_FS); #if SDIO_USE_GPDMA DMA_HandleTypeDef sd_dma; dma_init(&sd_dma, &SDMMC_DMA, DMA_MEMORY_TO_PERIPH, &sdmmc_handle); #if MICROPY_HW_ENABLE_MMCARD if (pyb_sdmmc_flags & PYB_SDMMC_FLAG_MMC) { sdmmc_handle.mmc.hdmatx = &sd_dma; } else #endif { sdmmc_handle.sd.hdmatx = &sd_dma; } #endif // make sure cache is flushed to RAM so the DMA can read the correct data MP_HAL_CLEAN_DCACHE(src, num_blocks * SDCARD_BLOCK_SIZE); sdcard_reset_periph(); #if MICROPY_HW_ENABLE_MMCARD if (pyb_sdmmc_flags & PYB_SDMMC_FLAG_MMC) { err = HAL_MMC_WriteBlocks_DMA(&sdmmc_handle.mmc, (uint8_t *)src, block_num, num_blocks); } else #endif { err = HAL_SD_WriteBlocks_DMA(&sdmmc_handle.sd, (uint8_t *)src, block_num, num_blocks); } if (err == HAL_OK) { err = sdcard_wait_finished(60000); } #if SDIO_USE_GPDMA dma_deinit(&SDMMC_DMA); #if MICROPY_HW_ENABLE_MMCARD if (pyb_sdmmc_flags & PYB_SDMMC_FLAG_MMC) { sdmmc_handle.mmc.hdmatx = NULL; } else #endif { sdmmc_handle.sd.hdmatx = NULL; } #endif restore_irq_pri(basepri); } else { #if MICROPY_HW_ENABLE_MMCARD if (pyb_sdmmc_flags & PYB_SDMMC_FLAG_MMC) { err = HAL_MMC_WriteBlocks(&sdmmc_handle.mmc, (uint8_t *)src, block_num, num_blocks, 60000); } else #endif { err = HAL_SD_WriteBlocks(&sdmmc_handle.sd, (uint8_t *)src, block_num, num_blocks, 60000); } if (err == HAL_OK) { err = sdcard_wait_finished(60000); } } return err; } /******************************************************************************/ // MicroPython bindings // // Expose the SD card or MMC as an object with the block protocol. #if !BUILDING_MBOOT // There are singleton SDCard/MMCard objects #if MICROPY_HW_ENABLE_SDCARD const mp_obj_base_t pyb_sdcard_obj = {&pyb_sdcard_type}; #endif #if MICROPY_HW_ENABLE_MMCARD const mp_obj_base_t pyb_mmcard_obj = {&pyb_mmcard_type}; #endif #if MICROPY_HW_ENABLE_SDCARD static mp_obj_t pyb_sdcard_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *args) { // check arguments mp_arg_check_num(n_args, n_kw, 0, 0, false); #if MICROPY_HW_ENABLE_MMCARD if (pyb_sdmmc_flags & PYB_SDMMC_FLAG_MMC) { mp_raise_ValueError(MP_ERROR_TEXT("peripheral used by MMCard")); } #endif pyb_sdmmc_flags |= PYB_SDMMC_FLAG_SD; // return singleton object return MP_OBJ_FROM_PTR(&pyb_sdcard_obj); } #endif #if MICROPY_HW_ENABLE_MMCARD static mp_obj_t pyb_mmcard_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *args) { // check arguments mp_arg_check_num(n_args, n_kw, 0, 0, false); #if MICROPY_HW_ENABLE_SDCARD if (pyb_sdmmc_flags & PYB_SDMMC_FLAG_SD) { mp_raise_ValueError(MP_ERROR_TEXT("peripheral used by SDCard")); } #endif pyb_sdmmc_flags |= PYB_SDMMC_FLAG_MMC; // return singleton object return MP_OBJ_FROM_PTR(&pyb_mmcard_obj); } #endif static mp_obj_t sd_present(mp_obj_t self) { return mp_obj_new_bool(sdcard_is_present()); } static MP_DEFINE_CONST_FUN_OBJ_1(sd_present_obj, sd_present); static mp_obj_t sd_power(mp_obj_t self, mp_obj_t state) { bool result; if (mp_obj_is_true(state)) { result = sdcard_power_on(); } else { sdcard_power_off(); result = true; } return mp_obj_new_bool(result); } static MP_DEFINE_CONST_FUN_OBJ_2(sd_power_obj, sd_power); static mp_obj_t sd_info(mp_obj_t self) { if (!(pyb_sdmmc_flags & PYB_SDMMC_FLAG_ACTIVE)) { return mp_const_none; } uint32_t card_type; uint32_t log_block_nbr; uint32_t log_block_size; #if MICROPY_HW_ENABLE_MMCARD if (pyb_sdmmc_flags & PYB_SDMMC_FLAG_MMC) { card_type = sdmmc_handle.mmc.MmcCard.CardType; log_block_nbr = sdmmc_handle.mmc.MmcCard.LogBlockNbr; log_block_size = sdmmc_handle.mmc.MmcCard.LogBlockSize; } else #endif { card_type = sdmmc_handle.sd.SdCard.CardType; log_block_nbr = sdmmc_handle.sd.SdCard.LogBlockNbr; log_block_size = sdmmc_handle.sd.SdCard.LogBlockSize; } // cardinfo.SD_csd and cardinfo.SD_cid have lots of info but we don't use them mp_obj_t tuple[3] = { mp_obj_new_int_from_ull((uint64_t)log_block_nbr * (uint64_t)log_block_size), mp_obj_new_int_from_uint(log_block_size), mp_obj_new_int(card_type), }; return mp_obj_new_tuple(3, tuple); } static MP_DEFINE_CONST_FUN_OBJ_1(sd_info_obj, sd_info); // now obsolete, kept for backwards compatibility static mp_obj_t sd_read(mp_obj_t self, mp_obj_t block_num) { uint8_t *dest = m_new(uint8_t, SDCARD_BLOCK_SIZE); mp_uint_t ret = sdcard_read_blocks(dest, mp_obj_get_int(block_num), 1); if (ret != 0) { m_del(uint8_t, dest, SDCARD_BLOCK_SIZE); mp_raise_msg_varg(&mp_type_Exception, MP_ERROR_TEXT("sdcard_read_blocks failed [%u]"), ret); } return mp_obj_new_bytearray_by_ref(SDCARD_BLOCK_SIZE, dest); } static MP_DEFINE_CONST_FUN_OBJ_2(sd_read_obj, sd_read); // now obsolete, kept for backwards compatibility static mp_obj_t sd_write(mp_obj_t self, mp_obj_t block_num, mp_obj_t data) { mp_buffer_info_t bufinfo; mp_get_buffer_raise(data, &bufinfo, MP_BUFFER_READ); if (bufinfo.len % SDCARD_BLOCK_SIZE != 0) { mp_raise_msg_varg(&mp_type_ValueError, MP_ERROR_TEXT("writes must be a multiple of %d bytes"), SDCARD_BLOCK_SIZE); } mp_uint_t ret = sdcard_write_blocks(bufinfo.buf, mp_obj_get_int(block_num), bufinfo.len / SDCARD_BLOCK_SIZE); if (ret != 0) { mp_raise_msg_varg(&mp_type_Exception, MP_ERROR_TEXT("sdcard_write_blocks failed [%u]"), ret); } return mp_const_none; } static MP_DEFINE_CONST_FUN_OBJ_3(sd_write_obj, sd_write); static mp_obj_t pyb_sdcard_readblocks(mp_obj_t self, mp_obj_t block_num, mp_obj_t buf) { mp_buffer_info_t bufinfo; mp_get_buffer_raise(buf, &bufinfo, MP_BUFFER_WRITE); mp_uint_t ret = sdcard_read_blocks(bufinfo.buf, mp_obj_get_int(block_num), bufinfo.len / SDCARD_BLOCK_SIZE); return mp_obj_new_bool(ret == 0); } static MP_DEFINE_CONST_FUN_OBJ_3(pyb_sdcard_readblocks_obj, pyb_sdcard_readblocks); static mp_obj_t pyb_sdcard_writeblocks(mp_obj_t self, mp_obj_t block_num, mp_obj_t buf) { mp_buffer_info_t bufinfo; mp_get_buffer_raise(buf, &bufinfo, MP_BUFFER_READ); mp_uint_t ret = sdcard_write_blocks(bufinfo.buf, mp_obj_get_int(block_num), bufinfo.len / SDCARD_BLOCK_SIZE); return mp_obj_new_bool(ret == 0); } static MP_DEFINE_CONST_FUN_OBJ_3(pyb_sdcard_writeblocks_obj, pyb_sdcard_writeblocks); static mp_obj_t pyb_sdcard_ioctl(mp_obj_t self, mp_obj_t cmd_in, mp_obj_t arg_in) { mp_int_t cmd = mp_obj_get_int(cmd_in); switch (cmd) { case MP_BLOCKDEV_IOCTL_INIT: if (!sdcard_power_on()) { return MP_OBJ_NEW_SMALL_INT(-1); // error } return MP_OBJ_NEW_SMALL_INT(0); // success case MP_BLOCKDEV_IOCTL_DEINIT: sdcard_power_off(); return MP_OBJ_NEW_SMALL_INT(0); // success case MP_BLOCKDEV_IOCTL_SYNC: // nothing to do return MP_OBJ_NEW_SMALL_INT(0); // success case MP_BLOCKDEV_IOCTL_BLOCK_COUNT: return MP_OBJ_NEW_SMALL_INT(sdcard_get_capacity_in_bytes() / SDCARD_BLOCK_SIZE); case MP_BLOCKDEV_IOCTL_BLOCK_SIZE: return MP_OBJ_NEW_SMALL_INT(SDCARD_BLOCK_SIZE); default: // unknown command return MP_OBJ_NEW_SMALL_INT(-1); // error } } static MP_DEFINE_CONST_FUN_OBJ_3(pyb_sdcard_ioctl_obj, pyb_sdcard_ioctl); static const mp_rom_map_elem_t pyb_sdcard_locals_dict_table[] = { { MP_ROM_QSTR(MP_QSTR_present), MP_ROM_PTR(&sd_present_obj) }, { MP_ROM_QSTR(MP_QSTR_power), MP_ROM_PTR(&sd_power_obj) }, { MP_ROM_QSTR(MP_QSTR_info), MP_ROM_PTR(&sd_info_obj) }, { MP_ROM_QSTR(MP_QSTR_read), MP_ROM_PTR(&sd_read_obj) }, { MP_ROM_QSTR(MP_QSTR_write), MP_ROM_PTR(&sd_write_obj) }, // block device protocol { MP_ROM_QSTR(MP_QSTR_readblocks), MP_ROM_PTR(&pyb_sdcard_readblocks_obj) }, { MP_ROM_QSTR(MP_QSTR_writeblocks), MP_ROM_PTR(&pyb_sdcard_writeblocks_obj) }, { MP_ROM_QSTR(MP_QSTR_ioctl), MP_ROM_PTR(&pyb_sdcard_ioctl_obj) }, }; static MP_DEFINE_CONST_DICT(pyb_sdcard_locals_dict, pyb_sdcard_locals_dict_table); #if MICROPY_HW_ENABLE_SDCARD MP_DEFINE_CONST_OBJ_TYPE( pyb_sdcard_type, MP_QSTR_SDCard, MP_TYPE_FLAG_NONE, make_new, pyb_sdcard_make_new, locals_dict, &pyb_sdcard_locals_dict ); #endif #if MICROPY_HW_ENABLE_MMCARD MP_DEFINE_CONST_OBJ_TYPE( pyb_mmcard_type, MP_QSTR_MMCard, MP_TYPE_FLAG_NONE, make_new, pyb_mmcard_make_new, locals_dict, &pyb_sdcard_locals_dict ); #endif void sdcard_init_vfs(fs_user_mount_t *vfs, int part) { pyb_sdmmc_flags = (pyb_sdmmc_flags & PYB_SDMMC_FLAG_ACTIVE) | PYB_SDMMC_FLAG_SD; // force SD mode vfs->base.type = &mp_fat_vfs_type; vfs->blockdev.flags |= MP_BLOCKDEV_FLAG_NATIVE | MP_BLOCKDEV_FLAG_HAVE_IOCTL; vfs->fatfs.drv = vfs; #if MICROPY_FATFS_MULTI_PARTITION vfs->fatfs.part = part; #endif vfs->blockdev.readblocks[0] = MP_OBJ_FROM_PTR(&pyb_sdcard_readblocks_obj); vfs->blockdev.readblocks[1] = MP_OBJ_FROM_PTR(&pyb_sdcard_obj); vfs->blockdev.readblocks[2] = MP_OBJ_FROM_PTR(sdcard_read_blocks); // native version vfs->blockdev.writeblocks[0] = MP_OBJ_FROM_PTR(&pyb_sdcard_writeblocks_obj); vfs->blockdev.writeblocks[1] = MP_OBJ_FROM_PTR(&pyb_sdcard_obj); vfs->blockdev.writeblocks[2] = MP_OBJ_FROM_PTR(sdcard_write_blocks); // native version vfs->blockdev.u.ioctl[0] = MP_OBJ_FROM_PTR(&pyb_sdcard_ioctl_obj); vfs->blockdev.u.ioctl[1] = MP_OBJ_FROM_PTR(&pyb_sdcard_obj); } #endif // !BUILDING_MBOOT #endif // MICROPY_HW_ENABLE_SDCARD || MICROPY_HW_ENABLE_MMCARD