/* * This file is part of the MicroPython project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2018-2019 Damien P. George * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "py/mphal.h" #include "irq.h" #include "powerctrl.h" #if defined(STM32WB) void stm32_system_init(void) { if (RCC->CR == 0x00000560 && RCC->CFGR == 0x00070005) { // Wake from STANDBY with HSI enabled as system clock. The second core likely // also needs HSI to remain enabled, so do as little as possible here. #if (__FPU_PRESENT == 1) && (__FPU_USED == 1) // set CP10 and CP11 Full Access. SCB->CPACR |= (3 << (10 * 2)) | (3 << (11 * 2)); #endif // Disable all interrupts. RCC->CIER = 0x00000000; } else { // Other start-up (eg POR), use standard system init code. SystemInit(); } } #endif void powerctrl_config_systick(void) { // Configure SYSTICK to run at 1kHz (1ms interval) SysTick->CTRL |= SYSTICK_CLKSOURCE_HCLK; SysTick_Config(HAL_RCC_GetHCLKFreq() / 1000); NVIC_SetPriority(SysTick_IRQn, IRQ_PRI_SYSTICK); #if !BUILDING_MBOOT && (defined(STM32H5) || defined(STM32H7) || defined(STM32L4) || defined(STM32WB)) // Set SysTick IRQ priority variable in case the HAL needs to use it uwTickPrio = IRQ_PRI_SYSTICK; #endif } #if defined(STM32F0) void SystemClock_Config(void) { // Enable power control peripheral __HAL_RCC_PWR_CLK_ENABLE(); // Set flash latency to 1 because SYSCLK > 24MHz FLASH->ACR = (FLASH->ACR & ~0x7) | 0x1; #if MICROPY_HW_CLK_USE_HSI48 // Use the 48MHz internal oscillator // HAL does not support RCC CFGR SW=3 (HSI48 direct to SYSCLK) // so use HSI48 -> PREDIV(divide by 2) -> PLL (mult by 2) -> SYSCLK. RCC->CR2 |= RCC_CR2_HSI48ON; while ((RCC->CR2 & RCC_CR2_HSI48RDY) == 0) { // Wait for HSI48 to be ready } RCC->CFGR = 0 << RCC_CFGR_PLLMUL_Pos | 3 << RCC_CFGR_PLLSRC_Pos; // PLL mult by 2, src = HSI48/PREDIV RCC->CFGR2 = 1; // Input clock divided by 2 #elif MICROPY_HW_CLK_USE_HSE // Use HSE and the PLL to get a 48MHz SYSCLK #if MICROPY_HW_CLK_USE_BYPASS RCC->CR |= RCC_CR_HSEBYP; #endif RCC->CR |= RCC_CR_HSEON; while ((RCC->CR & RCC_CR_HSERDY) == 0) { // Wait for HSE to be ready } RCC->CFGR = ((48000000 / HSE_VALUE) - 2) << RCC_CFGR_PLLMUL_Pos | 2 << RCC_CFGR_PLLSRC_Pos; RCC->CFGR2 = 0; // Input clock not divided #elif MICROPY_HW_CLK_USE_HSI // Use the 8MHz internal oscillator and the PLL to get a 48MHz SYSCLK RCC->CR |= RCC_CR_HSION; while ((RCC->CR & RCC_CR_HSIRDY) == 0) { // Wait for HSI to be ready } RCC->CFGR = 4 << RCC_CFGR_PLLMUL_Pos | 1 << RCC_CFGR_PLLSRC_Pos; // PLL mult by 6, src = HSI RCC->CFGR2 = 0; // Input clock not divided #else #error System clock not specified #endif RCC->CR |= RCC_CR_PLLON; // Turn PLL on while ((RCC->CR & RCC_CR_PLLRDY) == 0) { // Wait for PLL to lock } const uint32_t sysclk_src = 2; // Select SYSCLK source RCC->CFGR |= sysclk_src << RCC_CFGR_SW_Pos; while (((RCC->CFGR >> RCC_CFGR_SWS_Pos) & 0x3) != sysclk_src) { // Wait for SYSCLK source to change } SystemCoreClockUpdate(); powerctrl_config_systick(); } #elif defined(STM32G0) void SystemClock_Config(void) { // Enable power control peripheral __HAL_RCC_PWR_CLK_ENABLE(); // Set flash latency to 2 because SYSCLK > 48MHz FLASH->ACR = (FLASH->ACR & ~0x7) | 0x2; #if MICROPY_HW_CLK_USE_HSI // Enable the 16MHz internal oscillator and the PLL to get a 64MHz SYSCLK RCC->CR |= RCC_CR_HSION; while ((RCC->CR & RCC_CR_HSIRDY) == 0) { // Wait for HSI to be ready } // Use the PLL to get a 64MHz SYSCLK #define PLLM (HSI_VALUE / 16000000) // input is 8MHz #define PLLN (8) // 8*16MHz = 128MHz #define PLLP (2) // f_P = 64MHz #define PLLQ (2) // f_Q = 64MHz #define PLLR (2) // f_R = 64MHz RCC->PLLCFGR = (PLLP - 1) << RCC_PLLCFGR_PLLP_Pos | RCC_PLLCFGR_PLLPEN | (PLLQ - 1) << RCC_PLLCFGR_PLLQ_Pos | RCC_PLLCFGR_PLLQEN | (PLLR - 1) << RCC_PLLCFGR_PLLR_Pos | RCC_PLLCFGR_PLLREN | PLLN << RCC_PLLCFGR_PLLN_Pos | (PLLM - 1) << RCC_PLLCFGR_PLLM_Pos | RCC_PLLCFGR_PLLSRC_HSI; #else #error System clock not specified #endif RCC->CR |= RCC_CR_PLLON; // Turn PLL on while ((RCC->CR & RCC_CR_PLLRDY) == 0) { // Wait for PLL to lock } const uint32_t sysclk_src = 2; // 2 = PLLRCLK // Select SYSCLK source RCC->CFGR |= sysclk_src << RCC_CFGR_SW_Pos; while (((RCC->CFGR >> RCC_CFGR_SWS_Pos) & 0x7) != sysclk_src) { // Wait for SYSCLK source to change } SystemCoreClockUpdate(); powerctrl_config_systick(); #if MICROPY_HW_ENABLE_RNG || MICROPY_HW_ENABLE_USB // Enable the 48MHz internal oscillator RCC->CR |= RCC_CR_HSI48ON; RCC->APBENR2 |= RCC_APBENR2_SYSCFGEN; while (!(RCC->CR & RCC_CR_HSI48RDY)) { // Wait for HSI48 to be ready } // Select HSI48 for USB RCC->CCIPR2 &= ~(3 << RCC_CCIPR2_USBSEL_Pos); #if MICROPY_HW_ENABLE_USB // Synchronise HSI48 with 1kHz USB SoF __HAL_RCC_CRS_CLK_ENABLE(); CRS->CR = 0x20 << CRS_CR_TRIM_Pos; CRS->CFGR = 2 << CRS_CFGR_SYNCSRC_Pos | 0x22 << CRS_CFGR_FELIM_Pos | __HAL_RCC_CRS_RELOADVALUE_CALCULATE(48000000, 1000) << CRS_CFGR_RELOAD_Pos; #endif #endif } #elif defined(STM32H5) void SystemClock_Config(void) { // Set power voltage scaling. __HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE0); while (!__HAL_PWR_GET_FLAG(PWR_FLAG_VOSRDY)) { } #if MICROPY_HW_CLK_USE_HSI LL_RCC_HSI_Enable(); while (!LL_RCC_HSI_IsReady()) { } const uint32_t pll1_source = LL_RCC_PLL1SOURCE_HSI; #else // Enable HSE. #if MICROPY_HW_CLK_USE_BYPASS LL_RCC_HSE_EnableBypass(); #endif LL_RCC_HSE_Enable(); while (!LL_RCC_HSE_IsReady()) { } const uint32_t pll1_source = LL_RCC_PLL1SOURCE_HSE; #endif // Configure PLL1 for use as system clock. LL_RCC_PLL1_ConfigDomain_SYS(pll1_source, MICROPY_HW_CLK_PLLM, MICROPY_HW_CLK_PLLN, MICROPY_HW_CLK_PLLP); LL_RCC_PLL1_SetFRACN(MICROPY_HW_CLK_PLLFRAC); LL_RCC_PLL1_SetVCOInputRange(MICROPY_HW_CLK_PLLVCI_LL); LL_RCC_PLL1_SetVCOOutputRange(MICROPY_HW_CLK_PLLVCO_LL); LL_RCC_PLL1P_Enable(); #if defined(MICROPY_HW_CLK_PLLQ) LL_RCC_PLL1_SetQ(MICROPY_HW_CLK_PLLQ); LL_RCC_PLL1Q_Enable(); #endif #if defined(MICROPY_HW_CLK_PLLR) LL_RCC_PLL1_SetR(MICROPY_HW_CLK_PLLR); LL_RCC_PLL1R_Enable(); #endif // Enable PLL1. LL_RCC_PLL1_Enable(); while (!LL_RCC_PLL1_IsReady()) { } // Configure bus dividers. LL_RCC_SetAHBPrescaler(LL_RCC_SYSCLK_DIV_1); LL_RCC_SetAPB1Prescaler(LL_RCC_APB1_DIV_1); LL_RCC_SetAPB2Prescaler(LL_RCC_APB2_DIV_1); LL_RCC_SetAPB3Prescaler(LL_RCC_APB3_DIV_1); // Configure the flash latency before switching the system clock source. __HAL_FLASH_SET_LATENCY(MICROPY_HW_FLASH_LATENCY); while (__HAL_FLASH_GET_LATENCY() != MICROPY_HW_FLASH_LATENCY) { } // Switch the system clock source to PLL1P. LL_RCC_SetSysClkSource(LL_RCC_SYS_CLKSOURCE_PLL1); while (LL_RCC_GetSysClkSource() != LL_RCC_SYS_CLKSOURCE_STATUS_PLL1) { } // Reconfigure clock state and SysTick. SystemCoreClockUpdate(); powerctrl_config_systick(); // USB clock configuration, either HSI48 or PLL3. #if MICROPY_HW_ENABLE_USB && !MICROPY_HW_CLK_USE_PLL3_FOR_USB // Enable HSI48. LL_RCC_HSI48_Enable(); while (!LL_RCC_HSI48_IsReady()) { } // Select HSI48 for USB clock source LL_RCC_SetUSBClockSource(LL_RCC_USB_CLKSOURCE_HSI48); // Synchronise HSI48 with 1kHz USB SoF __HAL_RCC_CRS_CLK_ENABLE(); CRS->CFGR = 2 << CRS_CFGR_SYNCSRC_Pos | 0x22 << CRS_CFGR_FELIM_Pos | __HAL_RCC_CRS_RELOADVALUE_CALCULATE(48000000, 1000) << CRS_CFGR_RELOAD_Pos; CRS->CR = 0x20 << CRS_CR_TRIM_Pos | CRS_CR_AUTOTRIMEN | CRS_CR_CEN; #elif MICROPY_HW_ENABLE_USB && MICROPY_HW_CLK_USE_PLL3_FOR_USB // Configure PLL3 for use by USB at Q=48MHz. LL_RCC_PLL3_SetSource(LL_RCC_PLL3SOURCE_HSE); LL_RCC_PLL3_SetM(MICROPY_HW_CLK_PLL3M); LL_RCC_PLL3_SetN(MICROPY_HW_CLK_PLL3N); LL_RCC_PLL3_SetP(MICROPY_HW_CLK_PLL3P); LL_RCC_PLL3_SetQ(MICROPY_HW_CLK_PLL3Q); LL_RCC_PLL3_SetR(MICROPY_HW_CLK_PLL3R); LL_RCC_PLL3_SetFRACN(MICROPY_HW_CLK_PLL3FRAC); LL_RCC_PLL3_SetVCOInputRange(MICROPY_HW_CLK_PLL3VCI_LL); LL_RCC_PLL3_SetVCOOutputRange(MICROPY_HW_CLK_PLL3VCO_LL); LL_RCC_PLL3Q_Enable(); // Enable PLL3. LL_RCC_PLL3_Enable(); while (!LL_RCC_PLL3_IsReady()) { } // Select PLL3-Q for USB clock source LL_RCC_SetUSBClockSource(LL_RCC_USB_CLKSOURCE_PLL3Q); #endif #ifdef NDEBUG DBGMCU->CR = 0; #endif } #elif defined(STM32L0) void SystemClock_Config(void) { // Enable power control peripheral __HAL_RCC_PWR_CLK_ENABLE(); // Set flash latency to 1 because SYSCLK > 16MHz FLASH->ACR |= FLASH_ACR_LATENCY; // Enable the 16MHz internal oscillator RCC->CR |= RCC_CR_HSION; while (!(RCC->CR & RCC_CR_HSIRDY)) { } // Use HSI16 and the PLL to get a 32MHz SYSCLK RCC->CFGR = 1 << RCC_CFGR_PLLDIV_Pos | 1 << RCC_CFGR_PLLMUL_Pos; RCC->CR |= RCC_CR_PLLON; while (!(RCC->CR & RCC_CR_PLLRDY)) { // Wait for PLL to lock } const uint32_t sysclk_src = 3; // Select SYSCLK source RCC->CFGR |= sysclk_src << RCC_CFGR_SW_Pos; while (((RCC->CFGR >> RCC_CFGR_SWS_Pos) & 0x3) != sysclk_src) { // Wait for SYSCLK source to change } SystemCoreClockUpdate(); powerctrl_config_systick(); #if MICROPY_HW_ENABLE_RNG || MICROPY_HW_ENABLE_USB // Enable the 48MHz internal oscillator RCC->CRRCR |= RCC_CRRCR_HSI48ON; RCC->APB2ENR |= RCC_APB2ENR_SYSCFGEN; SYSCFG->CFGR3 |= SYSCFG_CFGR3_ENREF_HSI48; while (!(RCC->CRRCR & RCC_CRRCR_HSI48RDY)) { // Wait for HSI48 to be ready } // Select RC48 as HSI48 for USB and RNG RCC->CCIPR |= RCC_CCIPR_HSI48SEL; #if MICROPY_HW_ENABLE_USB // Synchronise HSI48 with 1kHz USB SoF __HAL_RCC_CRS_CLK_ENABLE(); CRS->CR = 0x20 << CRS_CR_TRIM_Pos; CRS->CFGR = 2 << CRS_CFGR_SYNCSRC_Pos | 0x22 << CRS_CFGR_FELIM_Pos | __HAL_RCC_CRS_RELOADVALUE_CALCULATE(48000000, 1000) << CRS_CFGR_RELOAD_Pos; #endif #endif } #elif defined(STM32L1) void SystemClock_Config(void) { // Enable power control peripheral __HAL_RCC_PWR_CLK_ENABLE(); // Set power voltage scaling __HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1); // Enable the FLASH 64-bit access FLASH->ACR = FLASH_ACR_ACC64; // Set flash latency to 1 because SYSCLK > 16MHz FLASH->ACR |= MICROPY_HW_FLASH_LATENCY; #if MICROPY_HW_CLK_USE_HSI // Enable the 16MHz internal oscillator RCC->CR |= RCC_CR_HSION; while (!(RCC->CR & RCC_CR_HSIRDY)) { } RCC->CFGR = RCC_CFGR_PLLSRC_HSI; #else // Enable the 8MHz external oscillator RCC->CR |= RCC_CR_HSEBYP; RCC->CR |= RCC_CR_HSEON; while (!(RCC->CR & RCC_CR_HSERDY)) { } RCC->CFGR = RCC_CFGR_PLLSRC_HSE; #endif // Use HSI16 and the PLL to get a 32MHz SYSCLK RCC->CFGR |= MICROPY_HW_CLK_PLLMUL | MICROPY_HW_CLK_PLLDIV; RCC->CR |= RCC_CR_PLLON; while (!(RCC->CR & RCC_CR_PLLRDY)) { // Wait for PLL to lock } RCC->CFGR |= RCC_CFGR_SW_PLL; while ((RCC->CFGR & RCC_CFGR_SWS_Msk) != RCC_CFGR_SWS_PLL) { // Wait for SYSCLK source to change } SystemCoreClockUpdate(); powerctrl_config_systick(); #if MICROPY_HW_ENABLE_USB RCC->APB2ENR |= RCC_APB2ENR_SYSCFGEN; #endif // Disable the Debug Module in low-power mode due to prevent // unexpected HardFault after __WFI(). #if !defined(NDEBUG) DBGMCU->CR &= ~(DBGMCU_CR_DBG_SLEEP | DBGMCU_CR_DBG_STOP | DBGMCU_CR_DBG_STANDBY); #endif } #elif defined(STM32WB) void SystemClock_Config(void) { while (LL_HSEM_1StepLock(HSEM, CFG_HW_RCC_SEMID)) { } // Enable the 32MHz external oscillator RCC->CR |= RCC_CR_HSEON; while (!(RCC->CR & RCC_CR_HSERDY)) { } // Prevent CPU2 from disabling CLK48. // This semaphore protected access to the CLK48 configuration. // CPU1 should hold this semaphore while the USB peripheral is in use. // See AN5289 and https://github.com/micropython/micropython/issues/6316. while (LL_HSEM_1StepLock(HSEM, CFG_HW_CLK48_CONFIG_SEMID)) { } // Use HSE and the PLL to get a 64MHz SYSCLK #define PLLM (HSE_VALUE / 8000000) // VCO input is 8MHz #define PLLN (24) // 24*8MHz = 192MHz #define PLLQ (4) // f_Q = 48MHz #define PLLR (3) // f_R = 64MHz RCC->PLLCFGR = (PLLR - 1) << RCC_PLLCFGR_PLLR_Pos | RCC_PLLCFGR_PLLREN | (PLLQ - 1) << RCC_PLLCFGR_PLLQ_Pos | RCC_PLLCFGR_PLLQEN | PLLN << RCC_PLLCFGR_PLLN_Pos | (PLLM - 1) << RCC_PLLCFGR_PLLM_Pos | 3 << RCC_PLLCFGR_PLLSRC_Pos; RCC->CR |= RCC_CR_PLLON; while (!(RCC->CR & RCC_CR_PLLRDY)) { // Wait for PLL to lock } const uint32_t sysclk_src = 3; // Set divider for HCLK2 to 2 so f_HCLK2 = 32MHz RCC->EXTCFGR = 8 << RCC_EXTCFGR_C2HPRE_Pos; // Set flash latency to 3 because SYSCLK > 54MHz FLASH->ACR |= 3 << FLASH_ACR_LATENCY_Pos; // Select SYSCLK source RCC->CFGR |= sysclk_src << RCC_CFGR_SW_Pos; while (((RCC->CFGR >> RCC_CFGR_SWS_Pos) & 0x3) != sysclk_src) { // Wait for SYSCLK source to change } // Select PLLQ as 48MHz source for USB and RNG RCC->CCIPR = 2 << RCC_CCIPR_CLK48SEL_Pos; SystemCoreClockUpdate(); powerctrl_config_systick(); // Release RCC semaphore LL_HSEM_ReleaseLock(HSEM, CFG_HW_RCC_SEMID, 0); } #elif defined(STM32WL) #include "stm32wlxx_ll_utils.h" void SystemClock_Config(void) { // Set flash latency (2 wait states, sysclk > 36MHz) LL_FLASH_SetLatency(LL_FLASH_LATENCY_2); while (LL_FLASH_GetLatency() != LL_FLASH_LATENCY_2) { } LL_PWR_SetRegulVoltageScaling(LL_PWR_REGU_VOLTAGE_SCALE1); #if MICROPY_HW_CLK_USE_HSE // Enable the 32MHz external oscillator and 48MHZ SYSCLK via PLL #if MICROPY_HW_CLK_USE_BYPASS // Use "bypass power" option, port PB0_VDDTCXO supplies TCXO // (STM32WL5x has no other HSE bypass mode.) // "PB0 must be configured in analog mode prior enabling the HSE" // // Note: PB0 analog mode muxes PB0_VDDTCXO pin to the VDDTCXO regulator, set // to default voltage of 1.7V. Changing this voltage requires initializing // the SUBGHZ radio and sending a Set_Tcxo command to it. // // For the Nucelo-WL55 board, ST uses the NDK "NT2016SF-32M-END5875A" TCXO // which has no publicly available datasheet. However, the ST code for this // board always keeps the pin at the default 1.7V voltage level so changing // the level would only be needed if a different TCXO is used. // // (Note also that setting pin PB0 as a push-pull GPIO output is technically // possible too, but 3.3V will be too high for many TCXOs.) mp_hal_pin_config(pin_B0, MP_HAL_PIN_MODE_ANALOG, MP_HAL_PIN_PULL_NONE, 0); LL_RCC_HSE_EnableTcxo(); #endif // MICROPY_HW_CLK_USE_BYPASS LL_RCC_HSE_Enable(); while (!LL_RCC_HSE_IsReady()) { // Wait for HSE Ready signal } // Configure PLL for a 48MHz SYSCLK #define PLLM (HSE_VALUE / 16000000) // VCO input 16MHz (recommended in ST docs) #define PLLN (6) // 7*8MHz = 96MHz #define PLLP (2) // f_P = 48MHz #define PLLQ (2) // f_Q = 48MHz #define PLLR (2) // f_R = 48MHz RCC->PLLCFGR = (PLLR - 1) << RCC_PLLCFGR_PLLR_Pos | RCC_PLLCFGR_PLLREN | (PLLQ - 1) << RCC_PLLCFGR_PLLQ_Pos | RCC_PLLCFGR_PLLQEN | (PLLP - 1) << RCC_PLLCFGR_PLLP_Pos | RCC_PLLCFGR_PLLPEN | PLLN << RCC_PLLCFGR_PLLN_Pos | (PLLM - 1) << RCC_PLLCFGR_PLLM_Pos | LL_RCC_PLLSOURCE_HSE; LL_RCC_PLL_Enable(); LL_RCC_PLL_EnableDomain_SYS(); while (!LL_RCC_PLL_IsReady()) { // Wait for PLL to lock } LL_RCC_SetSysClkSource(LL_RCC_SYS_CLKSOURCE_PLL); while (LL_RCC_GetSysClkSource() != LL_RCC_SYS_CLKSOURCE_STATUS_PLL) { // Wait for system clock source to switch } #else // Use MSI as 48MHz source for SYSCLK // Enable MSI LL_RCC_MSI_Enable(); while (!LL_RCC_MSI_IsReady()) { } // Configure MSI LL_RCC_MSI_EnableRangeSelection(); LL_RCC_MSI_SetRange(LL_RCC_MSIRANGE_11); LL_RCC_MSI_SetCalibTrimming(0); // Select SYSCLK source LL_RCC_SetSysClkSource(LL_RCC_SYS_CLKSOURCE_MSI); while (LL_RCC_GetSysClkSource() != LL_RCC_SYS_CLKSOURCE_STATUS_MSI) { } #endif // MICROPY_HW_CLK_USE_HSE // Set bus dividers LL_RCC_SetAHBPrescaler(LL_RCC_SYSCLK_DIV_1); LL_RCC_SetAHB3Prescaler(LL_RCC_SYSCLK_DIV_1); LL_RCC_SetAPB1Prescaler(LL_RCC_APB1_DIV_1); LL_RCC_SetAPB2Prescaler(LL_RCC_APB2_DIV_1); SystemCoreClockUpdate(); powerctrl_config_systick(); } #endif