/* * This file is part of the MicroPython project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2013, 2014 Damien P. George * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "py/runtime.h" #include "py/mphal.h" #include "extmod/virtpin.h" #include "pin.h" #include "extint.h" /// \moduleref pyb /// \class Pin - control I/O pins /// /// A pin is the basic object to control I/O pins. It has methods to set /// the mode of the pin (input, output, etc) and methods to get and set the /// digital logic level. For analog control of a pin, see the ADC class. /// /// Usage Model: /// /// All Board Pins are predefined as pyb.Pin.board.Name /// /// x1_pin = pyb.Pin.board.X1 /// /// g = pyb.Pin(pyb.Pin.board.X1, pyb.Pin.IN) /// /// CPU pins which correspond to the board pins are available /// as `pyb.cpu.Name`. For the CPU pins, the names are the port letter /// followed by the pin number. On the PYBv1.0, `pyb.Pin.board.X1` and /// `pyb.Pin.cpu.B6` are the same pin. /// /// You can also use strings: /// /// g = pyb.Pin('X1', pyb.Pin.OUT_PP) /// /// Users can add their own names: /// /// MyMapperDict = { 'LeftMotorDir' : pyb.Pin.cpu.C12 } /// pyb.Pin.dict(MyMapperDict) /// g = pyb.Pin("LeftMotorDir", pyb.Pin.OUT_OD) /// /// and can query mappings /// /// pin = pyb.Pin("LeftMotorDir") /// /// Users can also add their own mapping function: /// /// def MyMapper(pin_name): /// if pin_name == "LeftMotorDir": /// return pyb.Pin.cpu.A0 /// /// pyb.Pin.mapper(MyMapper) /// /// So, if you were to call: `pyb.Pin("LeftMotorDir", pyb.Pin.OUT_PP)` /// then `"LeftMotorDir"` is passed directly to the mapper function. /// /// To summarise, the following order determines how things get mapped into /// an ordinal pin number: /// /// 1. Directly specify a pin object /// 2. User supplied mapping function /// 3. User supplied mapping (object must be usable as a dictionary key) /// 4. Supply a string which matches a board pin /// 5. Supply a string which matches a CPU port/pin /// /// You can set `pyb.Pin.debug(True)` to get some debug information about /// how a particular object gets mapped to a pin. // Pin class variables static bool pin_class_debug; void pin_init0(void) { MP_STATE_PORT(pin_class_mapper) = mp_const_none; MP_STATE_PORT(pin_class_map_dict) = mp_const_none; pin_class_debug = false; } // C API used to convert a user-supplied pin name into an ordinal pin number. const machine_pin_obj_t *pin_find(mp_obj_t user_obj) { const mp_print_t *print = &mp_plat_print; const machine_pin_obj_t *pin_obj; // If a pin was provided, then use it if (mp_obj_is_type(user_obj, &pin_type) #if MICROPY_HW_ENABLE_ANALOG_ONLY_PINS || mp_obj_is_type(user_obj, &pin_analog_type) #endif ) { pin_obj = MP_OBJ_TO_PTR(user_obj); if (pin_class_debug) { mp_printf(print, "Pin map passed pin "); mp_obj_print(MP_OBJ_FROM_PTR(pin_obj), PRINT_STR); mp_printf(print, "\n"); } return pin_obj; } if (MP_STATE_PORT(pin_class_mapper) != mp_const_none) { mp_obj_t o = mp_call_function_1(MP_STATE_PORT(pin_class_mapper), user_obj); if (o != mp_const_none) { if (!mp_obj_is_type(o, &pin_type)) { mp_raise_ValueError(MP_ERROR_TEXT("Pin.mapper didn't return a Pin object")); } if (pin_class_debug) { mp_printf(print, "Pin.mapper maps "); mp_obj_print(user_obj, PRINT_REPR); mp_printf(print, " to "); mp_obj_print(o, PRINT_STR); mp_printf(print, "\n"); } return MP_OBJ_TO_PTR(o); } // The pin mapping function returned mp_const_none, fall through to // other lookup methods. } if (MP_STATE_PORT(pin_class_map_dict) != mp_const_none) { mp_map_t *pin_map_map = mp_obj_dict_get_map(MP_STATE_PORT(pin_class_map_dict)); mp_map_elem_t *elem = mp_map_lookup(pin_map_map, user_obj, MP_MAP_LOOKUP); if (elem != NULL && elem->value != MP_OBJ_NULL) { mp_obj_t o = elem->value; if (pin_class_debug) { mp_printf(print, "Pin.map_dict maps "); mp_obj_print(user_obj, PRINT_REPR); mp_printf(print, " to "); mp_obj_print(o, PRINT_STR); mp_printf(print, "\n"); } return MP_OBJ_TO_PTR(o); } } // See if the pin name matches a board pin pin_obj = pin_find_named_pin(&machine_pin_board_pins_locals_dict, user_obj); if (pin_obj) { if (pin_class_debug) { mp_printf(print, "Pin.board maps "); mp_obj_print(user_obj, PRINT_REPR); mp_printf(print, " to "); mp_obj_print(MP_OBJ_FROM_PTR(pin_obj), PRINT_STR); mp_printf(print, "\n"); } return pin_obj; } // See if the pin name matches a cpu pin pin_obj = pin_find_named_pin(&machine_pin_cpu_pins_locals_dict, user_obj); if (pin_obj) { if (pin_class_debug) { mp_printf(print, "Pin.cpu maps "); mp_obj_print(user_obj, PRINT_REPR); mp_printf(print, " to "); mp_obj_print(MP_OBJ_FROM_PTR(pin_obj), PRINT_STR); mp_printf(print, "\n"); } return pin_obj; } mp_raise_msg_varg(&mp_type_ValueError, MP_ERROR_TEXT("Pin(%s) doesn't exist"), mp_obj_str_get_str(user_obj)); } /// \method __str__() /// Return a string describing the pin object. static void pin_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) { machine_pin_obj_t *self = MP_OBJ_TO_PTR(self_in); // pin name mp_printf(print, "Pin(Pin.cpu.%q, mode=Pin.", self->name); uint32_t mode = pin_get_mode(self); if (mode == GPIO_MODE_ANALOG) { // analog mp_print_str(print, "ANALOG)"); } else { // IO mode bool af = false; qstr mode_qst; if (mode == GPIO_MODE_INPUT) { mode_qst = MP_QSTR_IN; } else if (mode == GPIO_MODE_OUTPUT_PP) { mode_qst = MP_QSTR_OUT; } else if (mode == GPIO_MODE_OUTPUT_OD) { mode_qst = MP_QSTR_OPEN_DRAIN; } else { af = true; if (mode == GPIO_MODE_AF_PP) { mode_qst = MP_QSTR_ALT; } else { mode_qst = MP_QSTR_ALT_OPEN_DRAIN; } } mp_print_str(print, qstr_str(mode_qst)); // pull mode qstr pull_qst = MP_QSTRnull; uint32_t pull = pin_get_pull(self); if (pull == GPIO_PULLUP) { pull_qst = MP_QSTR_PULL_UP; } else if (pull == GPIO_PULLDOWN) { pull_qst = MP_QSTR_PULL_DOWN; } if (pull_qst != MP_QSTRnull) { mp_printf(print, ", pull=Pin.%q", pull_qst); } // AF mode if (af) { mp_uint_t af_idx = pin_get_af(self); const pin_af_obj_t *af_obj = pin_find_af_by_index(self, af_idx); if (af_obj == NULL) { mp_printf(print, ", alt=%d)", af_idx); } else { mp_printf(print, ", alt=Pin.%q)", af_obj->name); } } else { mp_print_str(print, ")"); } } } static mp_obj_t pin_obj_init_helper(const machine_pin_obj_t *pin, size_t n_args, const mp_obj_t *args, mp_map_t *kw_args); /// \classmethod \constructor(id, ...) /// Create a new Pin object associated with the id. If additional arguments are given, /// they are used to initialise the pin. See `init`. mp_obj_t mp_pin_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *args) { mp_arg_check_num(n_args, n_kw, 1, MP_OBJ_FUN_ARGS_MAX, true); // Run an argument through the mapper and return the result. const machine_pin_obj_t *pin = pin_find(args[0]); if (n_args > 1 || n_kw > 0) { // pin mode given, so configure this GPIO mp_map_t kw_args; mp_map_init_fixed_table(&kw_args, n_kw, args + n_args); pin_obj_init_helper(pin, n_args - 1, args + 1, &kw_args); } else { // enable the peripheral clock so pin reading at least works mp_hal_gpio_clock_enable(pin->gpio); } return MP_OBJ_FROM_PTR(pin); } // fast method for getting/setting pin value static mp_obj_t pin_call(mp_obj_t self_in, size_t n_args, size_t n_kw, const mp_obj_t *args) { mp_arg_check_num(n_args, n_kw, 0, 1, false); machine_pin_obj_t *self = MP_OBJ_TO_PTR(self_in); if (n_args == 0) { // get pin return MP_OBJ_NEW_SMALL_INT(mp_hal_pin_read(self)); } else { // set pin mp_hal_pin_write(self, mp_obj_is_true(args[0])); return mp_const_none; } } /// \classmethod mapper([fun]) /// Get or set the pin mapper function. static mp_obj_t pin_mapper(size_t n_args, const mp_obj_t *args) { if (n_args > 1) { MP_STATE_PORT(pin_class_mapper) = args[1]; return mp_const_none; } return MP_STATE_PORT(pin_class_mapper); } static MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pin_mapper_fun_obj, 1, 2, pin_mapper); static MP_DEFINE_CONST_CLASSMETHOD_OBJ(pin_mapper_obj, MP_ROM_PTR(&pin_mapper_fun_obj)); /// \classmethod dict([dict]) /// Get or set the pin mapper dictionary. static mp_obj_t pin_map_dict(size_t n_args, const mp_obj_t *args) { if (n_args > 1) { MP_STATE_PORT(pin_class_map_dict) = args[1]; return mp_const_none; } return MP_STATE_PORT(pin_class_map_dict); } static MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pin_map_dict_fun_obj, 1, 2, pin_map_dict); static MP_DEFINE_CONST_CLASSMETHOD_OBJ(pin_map_dict_obj, MP_ROM_PTR(&pin_map_dict_fun_obj)); /// \classmethod af_list() /// Returns an array of alternate functions available for this pin. static mp_obj_t pin_af_list(mp_obj_t self_in) { machine_pin_obj_t *self = MP_OBJ_TO_PTR(self_in); mp_obj_t result = mp_obj_new_list(0, NULL); const pin_af_obj_t *af = self->af; for (mp_uint_t i = 0; i < self->num_af; i++, af++) { mp_obj_list_append(result, MP_OBJ_FROM_PTR(af)); } return result; } static MP_DEFINE_CONST_FUN_OBJ_1(pin_af_list_obj, pin_af_list); /// \classmethod debug([state]) /// Get or set the debugging state (`True` or `False` for on or off). static mp_obj_t pin_debug(size_t n_args, const mp_obj_t *args) { if (n_args > 1) { pin_class_debug = mp_obj_is_true(args[1]); return mp_const_none; } return mp_obj_new_bool(pin_class_debug); } static MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pin_debug_fun_obj, 1, 2, pin_debug); static MP_DEFINE_CONST_CLASSMETHOD_OBJ(pin_debug_obj, MP_ROM_PTR(&pin_debug_fun_obj)); // init(mode, pull=None, alt=-1, *, value, alt) static mp_obj_t pin_obj_init_helper(const machine_pin_obj_t *self, size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) { static const mp_arg_t allowed_args[] = { { MP_QSTR_mode, MP_ARG_REQUIRED | MP_ARG_INT }, { MP_QSTR_pull, MP_ARG_OBJ, {.u_rom_obj = MP_ROM_NONE}}, { MP_QSTR_af, MP_ARG_INT, {.u_int = -1}}, // legacy { MP_QSTR_value, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL}}, { MP_QSTR_alt, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = -1}}, }; // parse args mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)]; mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args); // get io mode uint mode = args[0].u_int; if (!IS_GPIO_MODE(mode)) { mp_raise_msg_varg(&mp_type_ValueError, MP_ERROR_TEXT("invalid pin mode: %d"), mode); } // get pull mode uint pull = GPIO_NOPULL; if (args[1].u_obj != mp_const_none) { pull = mp_obj_get_int(args[1].u_obj); } if (!IS_GPIO_PULL(pull)) { mp_raise_msg_varg(&mp_type_ValueError, MP_ERROR_TEXT("invalid pin pull: %d"), pull); } // get af (alternate function); alt-arg overrides af-arg mp_int_t af = args[4].u_int; if (af == -1) { af = args[2].u_int; } if ((mode == GPIO_MODE_AF_PP || mode == GPIO_MODE_AF_OD) && !IS_GPIO_AF(af)) { mp_raise_msg_varg(&mp_type_ValueError, MP_ERROR_TEXT("invalid pin af: %d"), af); } // enable the peripheral clock for the port of this pin mp_hal_gpio_clock_enable(self->gpio); // if given, set the pin value before initialising to prevent glitches if (args[3].u_obj != MP_OBJ_NULL) { mp_hal_pin_write(self, mp_obj_is_true(args[3].u_obj)); } // configure the GPIO as requested GPIO_InitTypeDef GPIO_InitStructure; GPIO_InitStructure.Pin = self->pin_mask; GPIO_InitStructure.Mode = mode; GPIO_InitStructure.Pull = pull; GPIO_InitStructure.Speed = GPIO_SPEED_FREQ_HIGH; GPIO_InitStructure.Alternate = af; HAL_GPIO_Init(self->gpio, &GPIO_InitStructure); return mp_const_none; } static mp_obj_t pin_obj_init(size_t n_args, const mp_obj_t *args, mp_map_t *kw_args) { return pin_obj_init_helper(MP_OBJ_TO_PTR(args[0]), n_args - 1, args + 1, kw_args); } MP_DEFINE_CONST_FUN_OBJ_KW(pin_init_obj, 1, pin_obj_init); /// \method value([value]) /// Get or set the digital logic level of the pin: /// /// - With no argument, return 0 or 1 depending on the logic level of the pin. /// - With `value` given, set the logic level of the pin. `value` can be /// anything that converts to a boolean. If it converts to `True`, the pin /// is set high, otherwise it is set low. static mp_obj_t pin_value(size_t n_args, const mp_obj_t *args) { return pin_call(args[0], n_args - 1, 0, args + 1); } static MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pin_value_obj, 1, 2, pin_value); static mp_obj_t pin_off(mp_obj_t self_in) { machine_pin_obj_t *self = MP_OBJ_TO_PTR(self_in); mp_hal_pin_low(self); return mp_const_none; } static MP_DEFINE_CONST_FUN_OBJ_1(pin_off_obj, pin_off); static mp_obj_t pin_on(mp_obj_t self_in) { machine_pin_obj_t *self = MP_OBJ_TO_PTR(self_in); mp_hal_pin_high(self); return mp_const_none; } static MP_DEFINE_CONST_FUN_OBJ_1(pin_on_obj, pin_on); // pin.irq(handler=None, trigger=IRQ_FALLING|IRQ_RISING, hard=False) static mp_obj_t pin_irq(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) { enum { ARG_handler, ARG_trigger, ARG_hard }; static const mp_arg_t allowed_args[] = { { MP_QSTR_handler, MP_ARG_OBJ, {.u_rom_obj = MP_ROM_NONE} }, { MP_QSTR_trigger, MP_ARG_INT, {.u_int = GPIO_MODE_IT_RISING | GPIO_MODE_IT_FALLING} }, { MP_QSTR_hard, MP_ARG_BOOL, {.u_bool = false} }, }; machine_pin_obj_t *self = MP_OBJ_TO_PTR(pos_args[0]); mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)]; mp_arg_parse_all(n_args - 1, pos_args + 1, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args); if (n_args > 1 || kw_args->used != 0) { // configure irq extint_register_pin(self, args[ARG_trigger].u_int, args[ARG_hard].u_bool, args[ARG_handler].u_obj); } // TODO should return an IRQ object return mp_const_none; } static MP_DEFINE_CONST_FUN_OBJ_KW(pin_irq_obj, 1, pin_irq); /// \method name() /// Get the pin name. static mp_obj_t pin_name(mp_obj_t self_in) { machine_pin_obj_t *self = MP_OBJ_TO_PTR(self_in); return MP_OBJ_NEW_QSTR(self->name); } static MP_DEFINE_CONST_FUN_OBJ_1(pin_name_obj, pin_name); /// \method names() /// Returns the cpu and board names for this pin. static mp_obj_t pin_names(mp_obj_t self_in) { machine_pin_obj_t *self = MP_OBJ_TO_PTR(self_in); mp_obj_t result = mp_obj_new_list(0, NULL); mp_obj_list_append(result, MP_OBJ_NEW_QSTR(self->name)); const mp_map_t *map = &machine_pin_board_pins_locals_dict.map; mp_map_elem_t *elem = map->table; for (mp_uint_t i = 0; i < map->used; i++, elem++) { if (elem->value == self_in) { mp_obj_list_append(result, elem->key); } } return result; } static MP_DEFINE_CONST_FUN_OBJ_1(pin_names_obj, pin_names); /// \method port() /// Get the pin port. static mp_obj_t pin_port(mp_obj_t self_in) { machine_pin_obj_t *self = MP_OBJ_TO_PTR(self_in); return MP_OBJ_NEW_SMALL_INT(self->port); } static MP_DEFINE_CONST_FUN_OBJ_1(pin_port_obj, pin_port); /// \method pin() /// Get the pin number. static mp_obj_t pin_pin(mp_obj_t self_in) { machine_pin_obj_t *self = MP_OBJ_TO_PTR(self_in); return MP_OBJ_NEW_SMALL_INT(self->pin); } static MP_DEFINE_CONST_FUN_OBJ_1(pin_pin_obj, pin_pin); /// \method gpio() /// Returns the base address of the GPIO block associated with this pin. static mp_obj_t pin_gpio(mp_obj_t self_in) { machine_pin_obj_t *self = MP_OBJ_TO_PTR(self_in); return MP_OBJ_NEW_SMALL_INT((intptr_t)self->gpio); } static MP_DEFINE_CONST_FUN_OBJ_1(pin_gpio_obj, pin_gpio); /// \method mode() /// Returns the currently configured mode of the pin. The integer returned /// will match one of the allowed constants for the mode argument to the init /// function. static mp_obj_t pin_mode(mp_obj_t self_in) { return MP_OBJ_NEW_SMALL_INT(pin_get_mode(MP_OBJ_TO_PTR(self_in))); } static MP_DEFINE_CONST_FUN_OBJ_1(pin_mode_obj, pin_mode); /// \method pull() /// Returns the currently configured pull of the pin. The integer returned /// will match one of the allowed constants for the pull argument to the init /// function. static mp_obj_t pin_pull(mp_obj_t self_in) { return MP_OBJ_NEW_SMALL_INT(pin_get_pull(MP_OBJ_TO_PTR(self_in))); } static MP_DEFINE_CONST_FUN_OBJ_1(pin_pull_obj, pin_pull); /// \method af() /// Returns the currently configured alternate-function of the pin. The /// integer returned will match one of the allowed constants for the af /// argument to the init function. static mp_obj_t pin_af(mp_obj_t self_in) { return MP_OBJ_NEW_SMALL_INT(pin_get_af(MP_OBJ_TO_PTR(self_in))); } static MP_DEFINE_CONST_FUN_OBJ_1(pin_af_obj, pin_af); static const mp_rom_map_elem_t pin_locals_dict_table[] = { // instance methods { MP_ROM_QSTR(MP_QSTR_init), MP_ROM_PTR(&pin_init_obj) }, { MP_ROM_QSTR(MP_QSTR_value), MP_ROM_PTR(&pin_value_obj) }, { MP_ROM_QSTR(MP_QSTR_off), MP_ROM_PTR(&pin_off_obj) }, { MP_ROM_QSTR(MP_QSTR_on), MP_ROM_PTR(&pin_on_obj) }, { MP_ROM_QSTR(MP_QSTR_irq), MP_ROM_PTR(&pin_irq_obj) }, // Legacy names as used by pyb.Pin { MP_ROM_QSTR(MP_QSTR_low), MP_ROM_PTR(&pin_off_obj) }, { MP_ROM_QSTR(MP_QSTR_high), MP_ROM_PTR(&pin_on_obj) }, { MP_ROM_QSTR(MP_QSTR_name), MP_ROM_PTR(&pin_name_obj) }, { MP_ROM_QSTR(MP_QSTR_names), MP_ROM_PTR(&pin_names_obj) }, { MP_ROM_QSTR(MP_QSTR_af_list), MP_ROM_PTR(&pin_af_list_obj) }, { MP_ROM_QSTR(MP_QSTR_port), MP_ROM_PTR(&pin_port_obj) }, { MP_ROM_QSTR(MP_QSTR_pin), MP_ROM_PTR(&pin_pin_obj) }, { MP_ROM_QSTR(MP_QSTR_gpio), MP_ROM_PTR(&pin_gpio_obj) }, { MP_ROM_QSTR(MP_QSTR_mode), MP_ROM_PTR(&pin_mode_obj) }, { MP_ROM_QSTR(MP_QSTR_pull), MP_ROM_PTR(&pin_pull_obj) }, { MP_ROM_QSTR(MP_QSTR_af), MP_ROM_PTR(&pin_af_obj) }, // class methods { MP_ROM_QSTR(MP_QSTR_mapper), MP_ROM_PTR(&pin_mapper_obj) }, { MP_ROM_QSTR(MP_QSTR_dict), MP_ROM_PTR(&pin_map_dict_obj) }, { MP_ROM_QSTR(MP_QSTR_debug), MP_ROM_PTR(&pin_debug_obj) }, // class attributes { MP_ROM_QSTR(MP_QSTR_board), MP_ROM_PTR(&pin_board_pins_obj_type) }, { MP_ROM_QSTR(MP_QSTR_cpu), MP_ROM_PTR(&pin_cpu_pins_obj_type) }, // class constants { MP_ROM_QSTR(MP_QSTR_IN), MP_ROM_INT(GPIO_MODE_INPUT) }, { MP_ROM_QSTR(MP_QSTR_OUT), MP_ROM_INT(GPIO_MODE_OUTPUT_PP) }, { MP_ROM_QSTR(MP_QSTR_OPEN_DRAIN), MP_ROM_INT(GPIO_MODE_OUTPUT_OD) }, { MP_ROM_QSTR(MP_QSTR_ALT), MP_ROM_INT(GPIO_MODE_AF_PP) }, { MP_ROM_QSTR(MP_QSTR_ALT_OPEN_DRAIN), MP_ROM_INT(GPIO_MODE_AF_OD) }, { MP_ROM_QSTR(MP_QSTR_ANALOG), MP_ROM_INT(GPIO_MODE_ANALOG) }, { MP_ROM_QSTR(MP_QSTR_PULL_UP), MP_ROM_INT(GPIO_PULLUP) }, { MP_ROM_QSTR(MP_QSTR_PULL_DOWN), MP_ROM_INT(GPIO_PULLDOWN) }, { MP_ROM_QSTR(MP_QSTR_IRQ_RISING), MP_ROM_INT(GPIO_MODE_IT_RISING) }, { MP_ROM_QSTR(MP_QSTR_IRQ_FALLING), MP_ROM_INT(GPIO_MODE_IT_FALLING) }, // legacy class constants { MP_ROM_QSTR(MP_QSTR_OUT_PP), MP_ROM_INT(GPIO_MODE_OUTPUT_PP) }, { MP_ROM_QSTR(MP_QSTR_OUT_OD), MP_ROM_INT(GPIO_MODE_OUTPUT_OD) }, { MP_ROM_QSTR(MP_QSTR_AF_PP), MP_ROM_INT(GPIO_MODE_AF_PP) }, { MP_ROM_QSTR(MP_QSTR_AF_OD), MP_ROM_INT(GPIO_MODE_AF_OD) }, { MP_ROM_QSTR(MP_QSTR_PULL_NONE), MP_ROM_INT(GPIO_NOPULL) }, #include "genhdr/pins_af_const.h" }; static MP_DEFINE_CONST_DICT(pin_locals_dict, pin_locals_dict_table); static mp_uint_t pin_ioctl(mp_obj_t self_in, mp_uint_t request, uintptr_t arg, int *errcode) { (void)errcode; machine_pin_obj_t *self = MP_OBJ_TO_PTR(self_in); switch (request) { case MP_PIN_READ: { return mp_hal_pin_read(self); } case MP_PIN_WRITE: { mp_hal_pin_write(self, arg); return 0; } } return -1; } static const mp_pin_p_t pin_pin_p = { .ioctl = pin_ioctl, }; MP_DEFINE_CONST_OBJ_TYPE( pin_type, MP_QSTR_Pin, MP_TYPE_FLAG_NONE, make_new, mp_pin_make_new, print, pin_print, call, pin_call, protocol, &pin_pin_p, locals_dict, &pin_locals_dict ); /******************************************************************************/ // Special analog-only pin. #if MICROPY_HW_ENABLE_ANALOG_ONLY_PINS // When both normal and _C pins are defined in pins.csv, force the corresponding // analog switch to be open. The macro code below will produce a compiler warning // if the board defines the switch as closed. #if defined(pin_A0) && defined(pin_A0_C) #define MICROPY_HW_ANALOG_SWITCH_PA0 (SYSCFG_SWITCH_PA0_OPEN) #endif #if defined(pin_A1) && defined(pin_A1_C) #define MICROPY_HW_ANALOG_SWITCH_PA1 (SYSCFG_SWITCH_PA1_OPEN) #endif #if defined(pin_C2) && defined(pin_C2_C) #define MICROPY_HW_ANALOG_SWITCH_PC2 (SYSCFG_SWITCH_PC2_OPEN) #endif #if defined(pin_C3) && defined(pin_C3_C) #define MICROPY_HW_ANALOG_SWITCH_PC3 (SYSCFG_SWITCH_PC3_OPEN) #endif static void pin_analog_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) { machine_pin_obj_t *self = MP_OBJ_TO_PTR(self_in); mp_printf(print, "Pin(Pin.cpu.%q, mode=Pin.ANALOG)", self->name); } MP_DEFINE_CONST_OBJ_TYPE( pin_analog_type, MP_QSTR_Pin, MP_TYPE_FLAG_NONE, print, pin_analog_print ); #endif /******************************************************************************/ // PinAF class /// \moduleref pyb /// \class PinAF - Pin Alternate Functions /// /// A Pin represents a physical pin on the microcprocessor. Each pin /// can have a variety of functions (GPIO, I2C SDA, etc). Each PinAF /// object represents a particular function for a pin. /// /// Usage Model: /// /// x3 = pyb.Pin.board.X3 /// x3_af = x3.af_list() /// /// x3_af will now contain an array of PinAF objects which are available on /// pin X3. /// /// For the pyboard, x3_af would contain: /// [Pin.AF1_TIM2, Pin.AF2_TIM5, Pin.AF3_TIM9, Pin.AF7_USART2] /// /// Normally, each peripheral would configure the af automatically, but sometimes /// the same function is available on multiple pins, and having more control /// is desired. /// /// To configure X3 to expose TIM2_CH3, you could use: /// pin = pyb.Pin(pyb.Pin.board.X3, mode=pyb.Pin.AF_PP, alt=pyb.Pin.AF1_TIM2) /// or: /// pin = pyb.Pin(pyb.Pin.board.X3, mode=pyb.Pin.AF_PP, alt=1) /// \method __str__() /// Return a string describing the alternate function. static void pin_af_obj_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) { pin_af_obj_t *self = MP_OBJ_TO_PTR(self_in); mp_printf(print, "Pin.%q", self->name); } /// \method index() /// Return the alternate function index. static mp_obj_t pin_af_index(mp_obj_t self_in) { pin_af_obj_t *af = MP_OBJ_TO_PTR(self_in); return MP_OBJ_NEW_SMALL_INT(af->idx); } static MP_DEFINE_CONST_FUN_OBJ_1(pin_af_index_obj, pin_af_index); /// \method name() /// Return the name of the alternate function. static mp_obj_t pin_af_name(mp_obj_t self_in) { pin_af_obj_t *af = MP_OBJ_TO_PTR(self_in); return MP_OBJ_NEW_QSTR(af->name); } static MP_DEFINE_CONST_FUN_OBJ_1(pin_af_name_obj, pin_af_name); /// \method reg() /// Return the base register associated with the peripheral assigned to this /// alternate function. For example, if the alternate function were TIM2_CH3 /// this would return stm.TIM2 static mp_obj_t pin_af_reg(mp_obj_t self_in) { pin_af_obj_t *af = MP_OBJ_TO_PTR(self_in); return MP_OBJ_NEW_SMALL_INT((uintptr_t)af->reg); } static MP_DEFINE_CONST_FUN_OBJ_1(pin_af_reg_obj, pin_af_reg); static const mp_rom_map_elem_t pin_af_locals_dict_table[] = { { MP_ROM_QSTR(MP_QSTR_index), MP_ROM_PTR(&pin_af_index_obj) }, { MP_ROM_QSTR(MP_QSTR_name), MP_ROM_PTR(&pin_af_name_obj) }, { MP_ROM_QSTR(MP_QSTR_reg), MP_ROM_PTR(&pin_af_reg_obj) }, }; static MP_DEFINE_CONST_DICT(pin_af_locals_dict, pin_af_locals_dict_table); MP_DEFINE_CONST_OBJ_TYPE( pin_af_type, MP_QSTR_PinAF, MP_TYPE_FLAG_NONE, print, pin_af_obj_print, locals_dict, &pin_af_locals_dict ); MP_REGISTER_ROOT_POINTER(mp_obj_t pin_class_mapper); MP_REGISTER_ROOT_POINTER(mp_obj_t pin_class_map_dict);