/* * This file is part of the MicroPython project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2023 Damien P. George * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ // This OCTOSPI driver is currently configured to run in 1-line (SPI) mode. // It uses the mp_qspi_proto_t QSPI protocol and translates quad-commands // into 1-line commands. #include "py/mperrno.h" #include "py/mphal.h" #include "octospi.h" #include "pin_static_af.h" #if defined(MICROPY_HW_OSPIFLASH_SIZE_BITS_LOG2) #ifndef MICROPY_HW_OSPI_PRESCALER #define MICROPY_HW_OSPI_PRESCALER (3) // F_CLK = F_AHB/3 #endif #ifndef MICROPY_HW_OSPI_CS_HIGH_CYCLES #define MICROPY_HW_OSPI_CS_HIGH_CYCLES (2) // nCS stays high for 2 cycles #endif void octospi_init(void) { // Configure OCTOSPI pins (allows 1, 2, 4 or 8 line configuration). mp_hal_pin_config_alt_static_speed(MICROPY_HW_OSPIFLASH_CS, MP_HAL_PIN_MODE_ALT, MP_HAL_PIN_PULL_NONE, MP_HAL_PIN_SPEED_VERY_HIGH, STATIC_AF_OCTOSPI1_NCS); mp_hal_pin_config_alt_static_speed(MICROPY_HW_OSPIFLASH_SCK, MP_HAL_PIN_MODE_ALT, MP_HAL_PIN_PULL_NONE, MP_HAL_PIN_SPEED_VERY_HIGH, STATIC_AF_OCTOSPI1_CLK); mp_hal_pin_config_alt_static_speed(MICROPY_HW_OSPIFLASH_IO0, MP_HAL_PIN_MODE_ALT, MP_HAL_PIN_PULL_NONE, MP_HAL_PIN_SPEED_VERY_HIGH, STATIC_AF_OCTOSPI1_IO0); #if defined(MICROPY_HW_OSPIFLASH_IO1) mp_hal_pin_config_alt_static_speed(MICROPY_HW_OSPIFLASH_IO1, MP_HAL_PIN_MODE_ALT, MP_HAL_PIN_PULL_NONE, MP_HAL_PIN_SPEED_VERY_HIGH, STATIC_AF_OCTOSPI1_IO1); #if defined(MICROPY_HW_OSPIFLASH_IO2) mp_hal_pin_config_alt_static_speed(MICROPY_HW_OSPIFLASH_IO2, MP_HAL_PIN_MODE_ALT, MP_HAL_PIN_PULL_NONE, MP_HAL_PIN_SPEED_VERY_HIGH, STATIC_AF_OCTOSPI1_IO2); mp_hal_pin_config_alt_static_speed(MICROPY_HW_OSPIFLASH_IO3, MP_HAL_PIN_MODE_ALT, MP_HAL_PIN_PULL_NONE, MP_HAL_PIN_SPEED_VERY_HIGH, STATIC_AF_OCTOSPI1_IO3); #if defined(MICROPY_HW_OSPIFLASH_IO4) mp_hal_pin_config_alt_static_speed(MICROPY_HW_OSPIFLASH_IO4, MP_HAL_PIN_MODE_ALT, MP_HAL_PIN_PULL_NONE, MP_HAL_PIN_SPEED_VERY_HIGH, STATIC_AF_OCTOSPI1_IO4); mp_hal_pin_config_alt_static_speed(MICROPY_HW_OSPIFLASH_IO5, MP_HAL_PIN_MODE_ALT, MP_HAL_PIN_PULL_NONE, MP_HAL_PIN_SPEED_VERY_HIGH, STATIC_AF_OCTOSPI1_IO5); mp_hal_pin_config_alt_static_speed(MICROPY_HW_OSPIFLASH_IO6, MP_HAL_PIN_MODE_ALT, MP_HAL_PIN_PULL_NONE, MP_HAL_PIN_SPEED_VERY_HIGH, STATIC_AF_OCTOSPI1_IO6); mp_hal_pin_config_alt_static_speed(MICROPY_HW_OSPIFLASH_IO7, MP_HAL_PIN_MODE_ALT, MP_HAL_PIN_PULL_NONE, MP_HAL_PIN_SPEED_VERY_HIGH, STATIC_AF_OCTOSPI1_IO7); #endif #endif #endif // Reset and turn on the OCTOSPI peripheral. __HAL_RCC_OSPI1_CLK_ENABLE(); __HAL_RCC_OSPI1_FORCE_RESET(); __HAL_RCC_OSPI1_RELEASE_RESET(); // Configure the OCTOSPI peripheral. OCTOSPI1->CR = 3 << OCTOSPI_CR_FTHRES_Pos // 4 bytes must be available to read/write | 0 << OCTOSPI_CR_MSEL_Pos // FLASH 0 selected | 0 << OCTOSPI_CR_DMM_Pos // dual-memory mode disabled ; OCTOSPI1->DCR1 = (MICROPY_HW_OSPIFLASH_SIZE_BITS_LOG2 - 3 - 1) << OCTOSPI_DCR1_DEVSIZE_Pos | (MICROPY_HW_OSPI_CS_HIGH_CYCLES - 1) << OCTOSPI_DCR1_CSHT_Pos | 0 << OCTOSPI_DCR1_CKMODE_Pos // CLK idles at low state ; OCTOSPI1->DCR2 = (MICROPY_HW_OSPI_PRESCALER - 1) << OCTOSPI_DCR2_PRESCALER_Pos ; OCTOSPI1->DCR3 = 0; OCTOSPI1->DCR4 = 0; // Enable the OCTOSPI peripheral. OCTOSPI1->CR |= OCTOSPI_CR_EN; } static int octospi_ioctl(void *self_in, uint32_t cmd) { (void)self_in; switch (cmd) { case MP_QSPI_IOCTL_INIT: octospi_init(); break; case MP_QSPI_IOCTL_BUS_ACQUIRE: // Abort any ongoing transfer if peripheral is busy. if (OCTOSPI1->SR & OCTOSPI_SR_BUSY) { OCTOSPI1->CR |= OCTOSPI_CR_ABORT; while (OCTOSPI1->CR & OCTOSPI_CR_ABORT) { } } break; case MP_QSPI_IOCTL_BUS_RELEASE: break; } return 0; // success } static int octospi_write_cmd_data(void *self_in, uint8_t cmd, size_t len, uint32_t data) { (void)self_in; OCTOSPI1->FCR = OCTOSPI_FCR_CTCF; // clear TC flag OCTOSPI1->CR = (OCTOSPI1->CR & ~OCTOSPI_CR_FMODE_Msk) | 0 << OCTOSPI_CR_FMODE_Pos; // indirect write mode if (len == 0) { OCTOSPI1->CCR = 0 << OCTOSPI_CCR_DDTR_Pos // DD mode disabled | 0 << OCTOSPI_CCR_SIOO_Pos // send instruction every transaction | 0 << OCTOSPI_CCR_DMODE_Pos // no data | 0 << OCTOSPI_CCR_ABMODE_Pos // no alternate byte | 0 << OCTOSPI_CCR_ADMODE_Pos // no address | 1 << OCTOSPI_CCR_IMODE_Pos // instruction on 1 line ; OCTOSPI1->TCR = 0 << OCTOSPI_TCR_DCYC_Pos; // 0 dummy cycles // This triggers the start of the operation. OCTOSPI1->IR = cmd << OCTOSPI_IR_INSTRUCTION_Pos; // write opcode } else { OCTOSPI1->DLR = len - 1; OCTOSPI1->CCR = 0 << OCTOSPI_CCR_DDTR_Pos // DD mode disabled | 0 << OCTOSPI_CCR_SIOO_Pos // send instruction every transaction | 1 << OCTOSPI_CCR_DMODE_Pos // data on 1 line | 0 << OCTOSPI_CCR_ABMODE_Pos // no alternate byte | 0 << OCTOSPI_CCR_ADMODE_Pos // no address | 1 << OCTOSPI_CCR_IMODE_Pos // instruction on 1 line ; OCTOSPI1->TCR = 0 << OCTOSPI_TCR_DCYC_Pos; // 0 dummy cycles OCTOSPI1->IR = cmd << OCTOSPI_IR_INSTRUCTION_Pos; // write opcode // Wait for at least 1 free byte location in the FIFO. while (!(OCTOSPI1->SR & OCTOSPI_SR_FTF)) { } // This triggers the start of the operation. // This assumes len==2 *(uint16_t *)&OCTOSPI1->DR = data; } // Wait for write to finish while (!(OCTOSPI1->SR & OCTOSPI_SR_TCF)) { if (OCTOSPI1->SR & OCTOSPI_SR_TEF) { return -MP_EIO; } } OCTOSPI1->FCR = OCTOSPI_FCR_CTCF; // clear TC flag return 0; } static int octospi_write_cmd_addr_data(void *self_in, uint8_t cmd, uint32_t addr, size_t len, const uint8_t *src) { (void)self_in; uint8_t adsize = MICROPY_HW_SPI_ADDR_IS_32BIT(addr) ? 3 : 2; OCTOSPI1->FCR = OCTOSPI_FCR_CTCF; // clear TC flag OCTOSPI1->CR = (OCTOSPI1->CR & ~OCTOSPI_CR_FMODE_Msk) | 0 << OCTOSPI_CR_FMODE_Pos; // indirect write mode if (len == 0) { OCTOSPI1->CCR = 0 << OCTOSPI_CCR_DDTR_Pos // DD mode disabled | 0 << OCTOSPI_CCR_SIOO_Pos // send instruction every transaction | 0 << OCTOSPI_CCR_DMODE_Pos // no data | 0 << OCTOSPI_CCR_ABMODE_Pos // no alternate byte | adsize << OCTOSPI_CCR_ADSIZE_Pos // 32/24-bit address size | 1 << OCTOSPI_CCR_ADMODE_Pos // address on 1 line | 1 << OCTOSPI_CCR_IMODE_Pos // instruction on 1 line ; OCTOSPI1->TCR = 0 << OCTOSPI_TCR_DCYC_Pos; // 0 dummy cycles OCTOSPI1->IR = cmd << OCTOSPI_IR_INSTRUCTION_Pos; // write opcode // This triggers the start of the operation. OCTOSPI1->AR = addr; } else { OCTOSPI1->DLR = len - 1; OCTOSPI1->CCR = 0 << OCTOSPI_CCR_DDTR_Pos // DD mode disabled | 0 << OCTOSPI_CCR_SIOO_Pos // send instruction every transaction | 1 << OCTOSPI_CCR_DMODE_Pos // data on 1 line | 0 << OCTOSPI_CCR_ABMODE_Pos // no alternate byte | adsize << OCTOSPI_CCR_ADSIZE_Pos // 32/24-bit address size | 1 << OCTOSPI_CCR_ADMODE_Pos // address on 1 line | 1 << OCTOSPI_CCR_IMODE_Pos // instruction on 1 line ; OCTOSPI1->TCR = 0 << OCTOSPI_TCR_DCYC_Pos; // 0 dummy cycles OCTOSPI1->IR = cmd << OCTOSPI_IR_INSTRUCTION_Pos; // write opcode OCTOSPI1->AR = addr; // Write out the data 1 byte at a time // This triggers the start of the operation. while (len) { while (!(OCTOSPI1->SR & OCTOSPI_SR_FTF)) { if (OCTOSPI1->SR & OCTOSPI_SR_TEF) { return -MP_EIO; } } *(volatile uint8_t *)&OCTOSPI1->DR = *src++; --len; } } // Wait for write to finish while (!(OCTOSPI1->SR & OCTOSPI_SR_TCF)) { if (OCTOSPI1->SR & OCTOSPI_SR_TEF) { return -MP_EIO; } } OCTOSPI1->FCR = OCTOSPI_FCR_CTCF; // clear TC flag return 0; } static int octospi_read_cmd(void *self_in, uint8_t cmd, size_t len, uint32_t *dest) { (void)self_in; OCTOSPI1->FCR = OCTOSPI_FCR_CTCF; // clear TC flag OCTOSPI1->DLR = len - 1; // number of bytes to read OCTOSPI1->CR = (OCTOSPI1->CR & ~OCTOSPI_CR_FMODE_Msk) | 1 << OCTOSPI_CR_FMODE_Pos; // indirect read mode OCTOSPI1->CCR = 0 << OCTOSPI_CCR_DDTR_Pos // DD mode disabled | 0 << OCTOSPI_CCR_SIOO_Pos // send instruction every transaction | 1 << OCTOSPI_CCR_DMODE_Pos // data on 1 line | 0 << OCTOSPI_CCR_ABMODE_Pos // no alternate byte | 0 << OCTOSPI_CCR_ADMODE_Pos // no address | 1 << OCTOSPI_CCR_IMODE_Pos // instruction on 1 line ; OCTOSPI1->TCR = 0 << OCTOSPI_TCR_DCYC_Pos; // 0 dummy cycles // This triggers the start of the operation. OCTOSPI1->IR = cmd << OCTOSPI_IR_INSTRUCTION_Pos; // read opcode // Wait for read to finish while (!(OCTOSPI1->SR & OCTOSPI_SR_TCF)) { if (OCTOSPI1->SR & OCTOSPI_SR_TEF) { return -MP_EIO; } } OCTOSPI1->FCR = OCTOSPI_FCR_CTCF; // clear TC flag // Read result *dest = OCTOSPI1->DR; return 0; } static int octospi_read_cmd_qaddr_qdata(void *self_in, uint8_t cmd, uint32_t addr, size_t len, uint8_t *dest) { (void)self_in; #if defined(MICROPY_HW_OSPIFLASH_IO1) && !defined(MICROPY_HW_OSPIFLASH_IO2) && !defined(MICROPY_HW_OSPIFLASH_IO4) // Use 2-line address, 2-line data. uint32_t adsize = MICROPY_HW_SPI_ADDR_IS_32BIT(addr) ? 3 : 2; uint32_t dmode = 2; // data on 2-lines uint32_t admode = 2; // address on 2-lines uint32_t dcyc = 4; // 4 dummy cycles if (cmd == 0xeb || cmd == 0xec) { // Convert to 2-line command. cmd = MICROPY_HW_SPI_ADDR_IS_32BIT(addr) ? 0xbc : 0xbb; } #else // Fallback to use 1-line address, 1-line data. uint32_t adsize = MICROPY_HW_SPI_ADDR_IS_32BIT(addr) ? 3 : 2; uint32_t dmode = 1; // data on 1-line uint32_t admode = 1; // address on 1-line uint32_t dcyc = 0; // 0 dummy cycles if (cmd == 0xeb || cmd == 0xec) { // Convert to 1-line command. cmd = MICROPY_HW_SPI_ADDR_IS_32BIT(addr) ? 0x13 : 0x03; } #endif OCTOSPI1->FCR = OCTOSPI_FCR_CTCF; // clear TC flag OCTOSPI1->DLR = len - 1; // number of bytes to read OCTOSPI1->CR = (OCTOSPI1->CR & ~OCTOSPI_CR_FMODE_Msk) | 1 << OCTOSPI_CR_FMODE_Pos; // indirect read mode OCTOSPI1->CCR = 0 << OCTOSPI_CCR_DDTR_Pos // DD mode disabled | 0 << OCTOSPI_CCR_SIOO_Pos // send instruction every transaction | dmode << OCTOSPI_CCR_DMODE_Pos // data on n lines | 0 << OCTOSPI_CCR_ABSIZE_Pos // 8-bit alternate byte | 0 << OCTOSPI_CCR_ABMODE_Pos // no alternate byte | adsize << OCTOSPI_CCR_ADSIZE_Pos // 32 or 24-bit address size | admode << OCTOSPI_CCR_ADMODE_Pos // address on n lines | 1 << OCTOSPI_CCR_IMODE_Pos // instruction on 1 line ; OCTOSPI1->TCR = dcyc << OCTOSPI_TCR_DCYC_Pos; // n dummy cycles OCTOSPI1->IR = cmd << OCTOSPI_IR_INSTRUCTION_Pos; // quad read opcode // This triggers the start of the operation. OCTOSPI1->AR = addr; // address to read from // Read in the data 4 bytes at a time if dest is aligned if (((uintptr_t)dest & 3) == 0) { while (len >= 4) { while (!(OCTOSPI1->SR & OCTOSPI_SR_FTF)) { if (OCTOSPI1->SR & OCTOSPI_SR_TEF) { return -MP_EIO; } } *(uint32_t *)dest = OCTOSPI1->DR; dest += 4; len -= 4; } } // Read in remaining data 1 byte at a time while (len) { while (!((OCTOSPI1->SR >> OCTOSPI_SR_FLEVEL_Pos) & 0x3f)) { if (OCTOSPI1->SR & OCTOSPI_SR_TEF) { return -MP_EIO; } } *dest++ = *(volatile uint8_t *)&OCTOSPI1->DR; --len; } OCTOSPI1->FCR = OCTOSPI_FCR_CTCF; // clear TC flag return 0; } const mp_qspi_proto_t octospi_proto = { .ioctl = octospi_ioctl, .write_cmd_data = octospi_write_cmd_data, .write_cmd_addr_data = octospi_write_cmd_addr_data, .read_cmd = octospi_read_cmd, .read_cmd_qaddr_qdata = octospi_read_cmd_qaddr_qdata, }; #endif // defined(MICROPY_HW_OSPIFLASH_SIZE_BITS_LOG2)