/* * This file is part of the MicroPython project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2013-2016 Damien P. George * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include #include "py/runtime.h" #include "py/mphal.h" #include "timer.h" #include "led.h" #include "pin.h" #if defined(MICROPY_HW_LED1) /// \moduleref pyb /// \class LED - LED object /// /// The LED object controls an individual LED (Light Emitting Diode). // the default is that LEDs are not inverted, and pin driven high turns them on #ifndef MICROPY_HW_LED_INVERTED #define MICROPY_HW_LED_INVERTED (0) #endif typedef struct _pyb_led_obj_t { mp_obj_base_t base; mp_uint_t led_id; const machine_pin_obj_t *led_pin; } pyb_led_obj_t; static const pyb_led_obj_t pyb_led_obj[] = { {{&pyb_led_type}, 1, MICROPY_HW_LED1}, #if defined(MICROPY_HW_LED2) {{&pyb_led_type}, 2, MICROPY_HW_LED2}, #if defined(MICROPY_HW_LED3) {{&pyb_led_type}, 3, MICROPY_HW_LED3}, #if defined(MICROPY_HW_LED4) {{&pyb_led_type}, 4, MICROPY_HW_LED4}, #if defined(MICROPY_HW_LED5) {{&pyb_led_type}, 5, MICROPY_HW_LED5}, #if defined(MICROPY_HW_LED6) {{&pyb_led_type}, 6, MICROPY_HW_LED6}, #endif #endif #endif #endif #endif }; #define NUM_LEDS MP_ARRAY_SIZE(pyb_led_obj) void led_init(void) { /* Turn off LEDs and initialize */ for (int led = 0; led < NUM_LEDS; led++) { const machine_pin_obj_t *led_pin = pyb_led_obj[led].led_pin; mp_hal_gpio_clock_enable(led_pin->gpio); MICROPY_HW_LED_OFF(led_pin); mp_hal_pin_output(led_pin); } } #if defined(MICROPY_HW_LED1_PWM) \ || defined(MICROPY_HW_LED2_PWM) \ || defined(MICROPY_HW_LED3_PWM) \ || defined(MICROPY_HW_LED4_PWM) \ || defined(MICROPY_HW_LED5_PWM) \ || defined(MICROPY_HW_LED6_PWM) // The following is semi-generic code to control LEDs using PWM. // It currently supports TIM1, TIM2 and TIM3, channels 1-4. // Configure by defining the relevant MICROPY_HW_LEDx_PWM macros in mpconfigboard.h. // If they are not defined then PWM will not be available for that LED. #define LED_PWM_ENABLED (1) #ifndef MICROPY_HW_LED1_PWM #define MICROPY_HW_LED1_PWM { NULL, 0, 0, 0 } #endif #ifndef MICROPY_HW_LED2_PWM #define MICROPY_HW_LED2_PWM { NULL, 0, 0, 0 } #endif #ifndef MICROPY_HW_LED3_PWM #define MICROPY_HW_LED3_PWM { NULL, 0, 0, 0 } #endif #ifndef MICROPY_HW_LED4_PWM #define MICROPY_HW_LED4_PWM { NULL, 0, 0, 0 } #endif #ifndef MICROPY_HW_LED5_PWM #define MICROPY_HW_LED5_PWM { NULL, 0, 0, 0 } #endif #ifndef MICROPY_HW_LED6_PWM #define MICROPY_HW_LED6_PWM { NULL, 0, 0, 0 } #endif #define LED_PWM_TIM_PERIOD (10000) // TIM runs at 1MHz and fires every 10ms // this gives the address of the CCR register for channels 1-4 #define LED_PWM_CCR(pwm_cfg) ((volatile uint32_t *)&(pwm_cfg)->tim->CCR1 + ((pwm_cfg)->tim_channel >> 2)) typedef struct _led_pwm_config_t { TIM_TypeDef *tim; uint8_t tim_id; uint8_t tim_channel; uint8_t alt_func; } led_pwm_config_t; static const led_pwm_config_t led_pwm_config[] = { MICROPY_HW_LED1_PWM, MICROPY_HW_LED2_PWM, MICROPY_HW_LED3_PWM, MICROPY_HW_LED4_PWM, MICROPY_HW_LED5_PWM, MICROPY_HW_LED6_PWM, }; static uint8_t led_pwm_state = 0; static inline bool led_pwm_is_enabled(int led) { return (led_pwm_state & (1 << led)) != 0; } // this function has a large stack so it should not be inlined static void led_pwm_init(int led) __attribute__((noinline)); static void led_pwm_init(int led) { const machine_pin_obj_t *led_pin = pyb_led_obj[led - 1].led_pin; const led_pwm_config_t *pwm_cfg = &led_pwm_config[led - 1]; // GPIO configuration mp_hal_pin_config(led_pin, MP_HAL_PIN_MODE_ALT, MP_HAL_PIN_PULL_NONE, pwm_cfg->alt_func); // TIM configuration switch (pwm_cfg->tim_id) { case 1: __TIM1_CLK_ENABLE(); break; case 2: __TIM2_CLK_ENABLE(); break; #if defined(TIM3) case 3: __TIM3_CLK_ENABLE(); break; #endif default: assert(0); } TIM_HandleTypeDef tim = {0}; tim.Instance = pwm_cfg->tim; tim.Init.Period = LED_PWM_TIM_PERIOD - 1; tim.Init.Prescaler = timer_get_source_freq(pwm_cfg->tim_id) / 1000000 - 1; // TIM runs at 1MHz tim.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1; tim.Init.CounterMode = TIM_COUNTERMODE_UP; tim.Init.RepetitionCounter = 0; HAL_TIM_PWM_Init(&tim); // PWM configuration TIM_OC_InitTypeDef oc_init; oc_init.OCMode = TIM_OCMODE_PWM1; oc_init.Pulse = 0; // off oc_init.OCPolarity = MICROPY_HW_LED_INVERTED ? TIM_OCPOLARITY_LOW : TIM_OCPOLARITY_HIGH; oc_init.OCFastMode = TIM_OCFAST_DISABLE; oc_init.OCNPolarity = TIM_OCNPOLARITY_HIGH; // needed for TIM1 and TIM8 oc_init.OCIdleState = TIM_OCIDLESTATE_SET; // needed for TIM1 and TIM8 oc_init.OCNIdleState = TIM_OCNIDLESTATE_SET; // needed for TIM1 and TIM8 HAL_TIM_PWM_ConfigChannel(&tim, &oc_init, pwm_cfg->tim_channel); HAL_TIM_PWM_Start(&tim, pwm_cfg->tim_channel); // indicate that this LED is using PWM led_pwm_state |= 1 << led; } static void led_pwm_deinit(int led) { // make the LED's pin a standard GPIO output pin const machine_pin_obj_t *led_pin = pyb_led_obj[led - 1].led_pin; GPIO_TypeDef *g = led_pin->gpio; uint32_t pin = led_pin->pin; static const int mode = 1; // output static const int alt = 0; // no alt func g->MODER = (g->MODER & ~(3 << (2 * pin))) | (mode << (2 * pin)); g->AFR[pin >> 3] = (g->AFR[pin >> 3] & ~(15 << (4 * (pin & 7)))) | (alt << (4 * (pin & 7))); led_pwm_state &= ~(1 << led); } #else #define LED_PWM_ENABLED (0) #endif void led_state(pyb_led_t led, int state) { if (led < 1 || led > NUM_LEDS) { return; } const machine_pin_obj_t *led_pin = pyb_led_obj[led - 1].led_pin; if (state == 0) { // turn LED off MICROPY_HW_LED_OFF(led_pin); } else { // turn LED on MICROPY_HW_LED_ON(led_pin); } #if LED_PWM_ENABLED if (led_pwm_is_enabled(led)) { led_pwm_deinit(led); } #endif } void led_toggle(pyb_led_t led) { if (led < 1 || led > NUM_LEDS) { return; } #if LED_PWM_ENABLED if (led_pwm_is_enabled(led)) { // if PWM is enabled then LED has non-zero intensity, so turn it off led_state(led, 0); return; } #endif // toggle the output data register to toggle the LED state const machine_pin_obj_t *led_pin = pyb_led_obj[led - 1].led_pin; led_pin->gpio->ODR ^= led_pin->pin_mask; } int led_get_intensity(pyb_led_t led) { if (led < 1 || led > NUM_LEDS) { return 0; } #if LED_PWM_ENABLED if (led_pwm_is_enabled(led)) { const led_pwm_config_t *pwm_cfg = &led_pwm_config[led - 1]; mp_uint_t i = (*LED_PWM_CCR(pwm_cfg) * 255 + LED_PWM_TIM_PERIOD - 2) / (LED_PWM_TIM_PERIOD - 1); if (i > 255) { i = 255; } return i; } #endif const machine_pin_obj_t *led_pin = pyb_led_obj[led - 1].led_pin; GPIO_TypeDef *gpio = led_pin->gpio; if (gpio->ODR & led_pin->pin_mask) { // pin is high return MICROPY_HW_LED_INVERTED ? 0 : 255; } else { // pin is low return MICROPY_HW_LED_INVERTED ? 255 : 0; } } void led_set_intensity(pyb_led_t led, mp_int_t intensity) { #if LED_PWM_ENABLED if (intensity > 0 && intensity < 255) { const led_pwm_config_t *pwm_cfg = &led_pwm_config[led - 1]; if (pwm_cfg->tim != NULL) { // set intensity using PWM pulse width if (!led_pwm_is_enabled(led)) { led_pwm_init(led); } *LED_PWM_CCR(pwm_cfg) = intensity * (LED_PWM_TIM_PERIOD - 1) / 255; return; } } #endif // intensity not supported for this LED; just turn it on/off led_state(led, intensity > 0); } void led_debug(int n, int delay) { led_state(1, n & 1); led_state(2, n & 2); led_state(3, n & 4); led_state(4, n & 8); mp_hal_delay_ms(delay); } /******************************************************************************/ /* MicroPython bindings */ void led_obj_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) { pyb_led_obj_t *self = MP_OBJ_TO_PTR(self_in); mp_printf(print, "LED(%u)", self->led_id); } /// \classmethod \constructor(id) /// Create an LED object associated with the given LED: /// /// - `id` is the LED number, 1-4. static mp_obj_t led_obj_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *args) { // check arguments mp_arg_check_num(n_args, n_kw, 1, 1, false); // get led number mp_int_t led_id = mp_obj_get_int(args[0]); // check led number if (!(1 <= led_id && led_id <= NUM_LEDS)) { mp_raise_msg_varg(&mp_type_ValueError, MP_ERROR_TEXT("LED(%d) doesn't exist"), led_id); } // return static led object return MP_OBJ_FROM_PTR(&pyb_led_obj[led_id - 1]); } /// \method on() /// Turn the LED on. mp_obj_t led_obj_on(mp_obj_t self_in) { pyb_led_obj_t *self = MP_OBJ_TO_PTR(self_in); led_state(self->led_id, 1); return mp_const_none; } /// \method off() /// Turn the LED off. mp_obj_t led_obj_off(mp_obj_t self_in) { pyb_led_obj_t *self = MP_OBJ_TO_PTR(self_in); led_state(self->led_id, 0); return mp_const_none; } /// \method toggle() /// Toggle the LED between on and off. mp_obj_t led_obj_toggle(mp_obj_t self_in) { pyb_led_obj_t *self = MP_OBJ_TO_PTR(self_in); led_toggle(self->led_id); return mp_const_none; } /// \method intensity([value]) /// Get or set the LED intensity. Intensity ranges between 0 (off) and 255 (full on). /// If no argument is given, return the LED intensity. /// If an argument is given, set the LED intensity and return `None`. mp_obj_t led_obj_intensity(size_t n_args, const mp_obj_t *args) { pyb_led_obj_t *self = MP_OBJ_TO_PTR(args[0]); if (n_args == 1) { return mp_obj_new_int(led_get_intensity(self->led_id)); } else { led_set_intensity(self->led_id, mp_obj_get_int(args[1])); return mp_const_none; } } static MP_DEFINE_CONST_FUN_OBJ_1(led_obj_on_obj, led_obj_on); static MP_DEFINE_CONST_FUN_OBJ_1(led_obj_off_obj, led_obj_off); static MP_DEFINE_CONST_FUN_OBJ_1(led_obj_toggle_obj, led_obj_toggle); static MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(led_obj_intensity_obj, 1, 2, led_obj_intensity); static const mp_rom_map_elem_t led_locals_dict_table[] = { { MP_ROM_QSTR(MP_QSTR_on), MP_ROM_PTR(&led_obj_on_obj) }, { MP_ROM_QSTR(MP_QSTR_off), MP_ROM_PTR(&led_obj_off_obj) }, { MP_ROM_QSTR(MP_QSTR_toggle), MP_ROM_PTR(&led_obj_toggle_obj) }, { MP_ROM_QSTR(MP_QSTR_intensity), MP_ROM_PTR(&led_obj_intensity_obj) }, }; static MP_DEFINE_CONST_DICT(led_locals_dict, led_locals_dict_table); MP_DEFINE_CONST_OBJ_TYPE( pyb_led_type, MP_QSTR_LED, MP_TYPE_FLAG_NONE, make_new, led_obj_make_new, print, led_obj_print, locals_dict, &led_locals_dict ); #else // For boards with no LEDs, we leave an empty function here so that we don't // have to put conditionals everywhere. void led_init(void) { } void led_state(pyb_led_t led, int state) { } void led_toggle(pyb_led_t led) { } #endif // defined(MICROPY_HW_LED1)