/* * This file is part of the MicroPython project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2021 Jim Mussared * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ // This is a translation of the cycle counter implementation in ports/stm32/machine_bitstream.c. #include "py/mpconfig.h" #include "py/mphal.h" #include "clock_config.h" #if MICROPY_PY_MACHINE_BITSTREAM #if __CORTEX_M == 0 // No cycle counter on M0, do manual cycle counting instead. // STM32F091 @ 48MHz #define NS_CYCLES_PER_ITER_HIGH (3) #define NS_CYCLES_PER_ITER_LOW (3) #define NS_OVERHEAD_CYCLES_HIGH (12) #define NS_OVERHEAD_CYCLES_LOW (15) uint32_t mp_hal_delay_ns_calc(uint32_t ns, bool high) { uint32_t ncycles = (get_cpu_freq() / 1000000 * ns + 500) / 1000; // + 500 for proper rounding uint32_t overhead = MIN(ncycles, high ? NS_OVERHEAD_CYCLES_HIGH : NS_OVERHEAD_CYCLES_LOW); return MAX(1, MP_ROUND_DIVIDE(ncycles - overhead, high ? NS_CYCLES_PER_ITER_HIGH : NS_CYCLES_PER_ITER_LOW)); } void machine_bitstream_high_low(mp_hal_pin_obj_t pin, uint32_t *timing_ns, const uint8_t *buf, size_t len) { volatile const uint32_t mask = 1 << (pin % 32); volatile uint32_t *outclr = &PORT->Group[pin / 32].OUTCLR.reg; volatile uint32_t *outset = &PORT->Group[pin / 32].OUTSET.reg; // Convert ns to loop iterations [high_time_0, low_time_0, high_time_1, low_time_1]. for (size_t i = 0; i < 4; ++i) { timing_ns[i] = mp_hal_delay_ns_calc(timing_ns[i], i % 2 == 0); } mp_uint_t atomic_state = MICROPY_BEGIN_ATOMIC_SECTION(); // Measured timing for SAMD21 at 48MHz (cycle=20.83ns) // timing_ns = (1,1,1,1) // high: 310 // low: 375 // high0: 375 // low0: 400 // timing_ns = (500, 500, 500, 500) // high: 500 // low: 500 // high0: 565 // low0: 540 // timing_ns = (1000, 1000, 1000, 1000) // high: 1000 // low: 1000 // high0: 1065 // low0: 1040 // --> high is 12 + n*3 cycles // low is 15 + n*3 cycles // NeoPixel timing (400, 850, 800, 450) (+/-150ns) gives timing_ns=(2, 9, 8, 3) which in cycles is // (12 + 6, 15 + 27, 15 + 24, 12 + 9) = (18, 42, 39, 21) // --> (375, 875, 812, 437) nanoseconds. // Measured output on logic analyser is (375, 875, 815, 435) (+/-5ns at 200MHz) // Note: the first high/low cycle is longer by 2-3 cycles (40-60ns). // This is slightly outside spec, but doesn't seem to cause a problem. __asm volatile ( // Force consistent register assignment. // r6 = len "ldr r6, %0\n" // r4 = buf "ldr r4, %1\n" // r5 = timing_ms "ldr r5, %2\n" // Must align for consistent timing. ".align 4\n" // Don't increment/decrement before first iteration. "b .outer2\n" ".outer:\n" // ++buf, --len " add r4, #1\n" " sub r6, #1\n" // len iterations ".outer2:\n" " cmp r6, #0\n" " beq .done\n" // r0 = *buf " ldrb r0, [r4, #0]\n" // 8 bits in byte " mov r7, #8\n" " .inner:\n" // *outset = mask " ldr r2, %3\n" " ldr r1, %5\n" " str r1, [r2, #0]\n" // r3 = (r0 >> 4) & 8 (r0 is 8 if high bit is 1 else 0) " mov r8, r6\n" " lsr r3, r0, #4\n" " mov r6, #8\n" " and r3, r6\n" " mov r6, r8\n" // r2 = timing_ns[r2] " ldr r2, [r5, r3]\n" " .loop1:\n sub r2, #1\n bne .loop1\n" // *outclr = mask " ldr r2, %4\n" " str r1, [r2, #0]\n" // r2 = timing_ns[r3 + 4] " add r3, #4\n" " ldr r2, [r5, r3]\n" " .loop2:\n sub r2, #1\n bne .loop2\n" // b >>= 1 " lsl r0, r0, #1\n" " sub r7, #1\n" // end of inner loop " beq .outer\n" // continue inner loop " b .inner\n" ".done:\n" : : "m" (len), "m" (buf), "m" (timing_ns), "m" (outset), "m" (outclr), "m" (mask) : "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", "r8" ); MICROPY_END_ATOMIC_SECTION(atomic_state); } #else // > CORTEX_M0 #define NS_TICKS_OVERHEAD (70) void machine_bitstream_high_low(mp_hal_pin_obj_t pin, uint32_t *timing_ns, const uint8_t *buf, size_t len) { uint32_t fcpu_mhz = get_cpu_freq() / 1000000; uint32_t ticks_overhead = fcpu_mhz * NS_TICKS_OVERHEAD / 1000; // Convert ns to us ticks [high_time_0, period_0, high_time_1, period_1]. for (size_t i = 0; i < 4; ++i) { timing_ns[i] = fcpu_mhz * timing_ns[i] / 1000; if (timing_ns[i] > ticks_overhead) { timing_ns[i] -= ticks_overhead; } if (i % 2 == 1) { // Convert low_time to period (i.e. add high_time). timing_ns[i] += timing_ns[i - 1] - ticks_overhead; } } mp_uint_t atomic_state = MICROPY_BEGIN_ATOMIC_SECTION(); DWT->CYCCNT = 0; for (size_t i = 0; i < len; ++i) { uint8_t b = buf[i]; for (size_t j = 0; j < 8; ++j) { uint32_t start_ticks = mp_hal_ticks_cpu(); uint32_t *t = &timing_ns[b >> 6 & 2]; mp_hal_pin_high(pin); while ((mp_hal_ticks_cpu() - start_ticks) < t[0]) { } b <<= 1; mp_hal_pin_low(pin); while ((mp_hal_ticks_cpu() - start_ticks) < t[1]) { } } } MICROPY_END_ATOMIC_SECTION(atomic_state); } #endif // > CORTEX_M0 #endif // MICROPY_PY_MACHINE_BITSTREAM