/* * This file is part of the MicroPython project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2013, 2014 Damien P. George * Copyright (c) 2021, 2022 Renesas Electronics Corporation * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include #include "py/obj.h" #include "py/mphal.h" #include "ra_it.h" #include "pendsv.h" #include "irq.h" #include "powerctrl.h" #include "pybthread.h" #include "gccollect.h" #include "extint.h" #include "timer.h" #include "uart.h" #include "storage.h" extern void __fatal_error(const char *); /******************************************************************************/ /* Cortex-M4 Processor Exceptions Handlers */ /******************************************************************************/ // Set the following to 1 to get some more information on the Hard Fault // More information about decoding the fault registers can be found here: // http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0646a/Cihdjcfc.html static char *fmt_hex(uint32_t val, char *buf) { const char *hexDig = "0123456789abcdef"; buf[0] = hexDig[(val >> 28) & 0x0f]; buf[1] = hexDig[(val >> 24) & 0x0f]; buf[2] = hexDig[(val >> 20) & 0x0f]; buf[3] = hexDig[(val >> 16) & 0x0f]; buf[4] = hexDig[(val >> 12) & 0x0f]; buf[5] = hexDig[(val >> 8) & 0x0f]; buf[6] = hexDig[(val >> 4) & 0x0f]; buf[7] = hexDig[(val >> 0) & 0x0f]; buf[8] = '\0'; return buf; } static void print_reg(const char *label, uint32_t val) { char hexStr[9]; mp_hal_stdout_tx_str(label); mp_hal_stdout_tx_str(fmt_hex(val, hexStr)); mp_hal_stdout_tx_str("\r\n"); } static void print_hex_hex(const char *label, uint32_t val1, uint32_t val2) { char hex_str[9]; mp_hal_stdout_tx_str(label); mp_hal_stdout_tx_str(fmt_hex(val1, hex_str)); mp_hal_stdout_tx_str(" "); mp_hal_stdout_tx_str(fmt_hex(val2, hex_str)); mp_hal_stdout_tx_str("\r\n"); } // The ARMv7M Architecture manual (section B.1.5.6) says that upon entry // to an exception, that the registers will be in the following order on the // // stack: R0, R1, R2, R3, R12, LR, PC, XPSR typedef struct { uint32_t r0, r1, r2, r3, r12, lr, pc, xpsr; } ExceptionRegisters_t; int pyb_hard_fault_debug = 0; void HardFault_C_Handler(ExceptionRegisters_t *regs) { if (!pyb_hard_fault_debug) { powerctrl_mcu_reset(); } #if MICROPY_HW_ENABLE_USB // We need to disable the USB so it doesn't try to write data out on // the VCP and then block indefinitely waiting for the buffer to drain. pyb_usb_flags = 0; #endif mp_hal_stdout_tx_str("HardFault\r\n"); print_reg("R0 ", regs->r0); print_reg("R1 ", regs->r1); print_reg("R2 ", regs->r2); print_reg("R3 ", regs->r3); print_reg("R12 ", regs->r12); print_reg("SP ", (uint32_t)regs); print_reg("LR ", regs->lr); print_reg("PC ", regs->pc); print_reg("XPSR ", regs->xpsr); #if __CORTEX_M >= 3 uint32_t cfsr = SCB->CFSR; print_reg("HFSR ", SCB->HFSR); print_reg("CFSR ", cfsr); if (cfsr & 0x80) { print_reg("MMFAR ", SCB->MMFAR); } if (cfsr & 0x8000) { print_reg("BFAR ", SCB->BFAR); } #endif if ((void *)&_ram_start <= (void *)regs && (void *)regs < (void *)&_ram_end) { mp_hal_stdout_tx_str("Stack:\r\n"); uint32_t *stack_top = &_estack; if ((void *)regs < (void *)&_sstack) { // stack not in static stack area so limit the amount we print stack_top = (uint32_t *)regs + 32; } for (uint32_t *sp = (uint32_t *)regs; sp < stack_top; ++sp) { print_hex_hex(" ", (uint32_t)sp, *sp); } } /* Go to infinite loop when Hard Fault exception occurs */ while (1) { __fatal_error("HardFault"); } } // Naked functions have no compiler generated gunk, so are the best thing to // use for asm functions. __attribute__((naked)) void HardFault_Handler(void) { // From the ARMv7M Architecture Reference Manual, section B.1.5.6 // on entry to the Exception, the LR register contains, amongst other // things, the value of CONTROL.SPSEL. This can be found in bit 3. // // If CONTROL.SPSEL is 0, then the exception was stacked up using the // main stack pointer (aka MSP). If CONTROL.SPSEL is 1, then the exception // was stacked up using the process stack pointer (aka PSP). #if __CORTEX_M == 0 __asm volatile ( " mov r0, lr \n" " lsr r0, r0, #3 \n" // Shift Bit 3 into carry to see which stack pointer we should use. " mrs r0, msp \n" // Make R0 point to main stack pointer " bcc .use_msp \n" // Keep MSP in R0 if SPSEL (carry) is 0 " mrs r0, psp \n" // Make R0 point to process stack pointer " .use_msp: \n" " b HardFault_C_Handler \n" // Off to C land ); #else __asm volatile ( " tst lr, #4 \n" // Test Bit 3 to see which stack pointer we should use. " ite eq \n" // Tell the assembler that the nest 2 instructions are if-then-else " mrseq r0, msp \n" // Make R0 point to main stack pointer " mrsne r0, psp \n" // Make R0 point to process stack pointer " b HardFault_C_Handler \n" // Off to C land ); #endif } #if 0 /** * @brief This function handles NMI exception. * @param None * @retval None */ void NMI_Handler(void) { } #endif /** * @brief This function handles Memory Manage exception. * @param None * @retval None */ void MemManage_Handler(void) { /* Go to infinite loop when Memory Manage exception occurs */ while (1) { __fatal_error("MemManage"); } } /** * @brief This function handles Bus Fault exception. * @param None * @retval None */ void BusFault_Handler(void) { /* Go to infinite loop when Bus Fault exception occurs */ while (1) { __fatal_error("BusFault"); } } /** * @brief This function handles Usage Fault exception. * @param None * @retval None */ void UsageFault_Handler(void) { /* Go to infinite loop when Usage Fault exception occurs */ while (1) { __fatal_error("UsageFault"); } } /** * @brief This function handles SVCall exception. * @param None * @retval None */ void SVC_Handler(void) { } /** * @brief This function handles Debug Monitor exception. * @param None * @retval None */ void DebugMon_Handler(void) { }