/* * This file is part of the MicroPython project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2013-2023 Damien P. George * Copyright (c) 2021,2022 Renesas Electronics Corporation * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ // This file is never compiled standalone, it's included directly from // extmod/machine_uart.c via MICROPY_PY_MACHINE_UART_INCLUDEFILE. #include "py/mperrno.h" #include "py/mphal.h" #include "shared/runtime/interrupt_char.h" #include "shared/runtime/mpirq.h" #include "uart.h" #include "irq.h" #include "pendsv.h" #define DEFAULT_UART_BAUDRATE (115200) #define MICROPY_PY_MACHINE_UART_CLASS_CONSTANTS \ { MP_ROM_QSTR(MP_QSTR_RTS), MP_ROM_INT(UART_HWCONTROL_RTS) }, \ { MP_ROM_QSTR(MP_QSTR_CTS), MP_ROM_INT(UART_HWCONTROL_CTS) }, \ static const char *_parity_name[] = {"None", "ODD", "EVEN"}; static void mp_machine_uart_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) { machine_uart_obj_t *self = MP_OBJ_TO_PTR(self_in); if (!self->is_enabled) { mp_printf(print, "UART(%u)", self->uart_id); } else { mp_printf(print, "UART(%u, baudrate=%u, bits=%u, parity=%s, stop=%u", self->uart_id, self->baudrate, self->bits, _parity_name[self->parity], self->stop); mp_printf(print, ", tx=%q, rx=%q", self->tx->name, self->rx->name); if (self->rts) { mp_printf(print, ", rts=%q", self->rts->name); } if (self->cts) { mp_printf(print, ", cts=%q", self->cts->name); } mp_printf(print, ", flow=%d, rxbuf=%d, timeout=%u, timeout_char=%u", self->flow, self->read_buf_len == 0 ? 0 : self->read_buf_len - 1, // -1 to adjust for usable length of buffer self->timeout, self->timeout_char); if (self->mp_irq_trigger != 0) { mp_printf(print, ", irq=0x%x", self->mp_irq_trigger); } mp_print_str(print, ")"); } } /// \method init(baudrate, bits=8, parity=None, stop=1, *, timeout=1000, timeout_char=0, flow=0, read_buf_len=64) /// /// Initialise the UART bus with the given parameters: /// /// - `baudrate` is the clock rate. /// - `bits` is the number of bits per byte, 7, 8 or 9. /// - `parity` is the parity, `None`, 0 (even) or 1 (odd). /// - `stop` is the number of stop bits, 1 or 2. /// - `timeout` is the timeout in milliseconds to wait for the first character. /// - `timeout_char` is the timeout in milliseconds to wait between characters. /// - `flow` is RTS | CTS where RTS == 256, CTS == 512 /// - `read_buf_len` is the character length of the read buffer (0 to disable). static void mp_machine_uart_init_helper(machine_uart_obj_t *self, size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) { static const mp_arg_t allowed_args[] = { { MP_QSTR_baudrate, MP_ARG_INT | MP_ARG_INT, {.u_int = 0} }, { MP_QSTR_bits, MP_ARG_INT, {.u_int = 8} }, { MP_QSTR_parity, MP_ARG_OBJ, {.u_rom_obj = MP_ROM_NONE} }, { MP_QSTR_stop, MP_ARG_INT, {.u_int = 1} }, { MP_QSTR_flow, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0} }, { MP_QSTR_timeout, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0} }, { MP_QSTR_timeout_char, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0} }, { MP_QSTR_rxbuf, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = -1} }, { MP_QSTR_read_buf_len, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 512} }, // legacy }; // parse args struct { mp_arg_val_t baudrate, bits, parity, stop, flow, timeout, timeout_char, rxbuf, read_buf_len; } args; mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, (mp_arg_val_t *)&args); // baudrate uint32_t baudrate = args.baudrate.u_int; if (baudrate == 0) { baudrate = DEFAULT_UART_BAUDRATE; } // parity uint32_t bits = args.bits.u_int; uint32_t parity; if (args.parity.u_obj == mp_const_none) { parity = UART_PARITY_NONE; } else { mp_int_t p = mp_obj_get_int(args.parity.u_obj); parity = (p & 1) ? UART_PARITY_ODD : UART_PARITY_EVEN; bits += 1; // STs convention has bits including parity } // number of bits if (!((bits == 7) | (bits == 8) | (bits == 9))) { mp_raise_ValueError(MP_ERROR_TEXT("unsupported combination of bits and parity")); } // stop bits uint32_t stop; switch (args.stop.u_int) { case 1: stop = UART_STOPBITS_1; break; default: stop = UART_STOPBITS_2; break; } // flow control uint32_t flow = args.flow.u_int; // Save attach_to_repl setting because uart_init will disable it. bool attach_to_repl = self->attached_to_repl; // uint32_t irq_state = disable_irq(); // init UART (if it fails, it's because the port doesn't exist) if (!uart_init(self, baudrate, bits, parity, stop, flow)) { mp_raise_msg_varg(&mp_type_ValueError, MP_ERROR_TEXT("UART(%d) doesn't exist"), self->uart_id); } // Restore attach_to_repl setting so UART still works if attached to dupterm. uart_attach_to_repl(self, attach_to_repl); // set timeout self->timeout = args.timeout.u_int; // set timeout_char // make sure it is at least as long as a whole character (13 bits to be safe) // minimum value is 2ms because sys-tick has a resolution of only 1ms self->timeout_char = args.timeout_char.u_int; uint32_t min_timeout_char = 13000 / baudrate + 2; if (self->timeout_char < min_timeout_char) { self->timeout_char = min_timeout_char; } if (self->is_static) { // Static UARTs have fixed memory for the rxbuf and can't be reconfigured. if (args.rxbuf.u_int >= 0) { mp_raise_ValueError(MP_ERROR_TEXT("UART is static and rxbuf can't be changed")); } uart_set_rxbuf(self, self->read_buf_len, self->read_buf); } else { // setup the read buffer m_del(byte, self->read_buf, self->read_buf_len << self->char_width); if (args.rxbuf.u_int >= 0) { // rxbuf overrides legacy read_buf_len args.read_buf_len.u_int = args.rxbuf.u_int; } if (args.read_buf_len.u_int <= 0) { // no read buffer uart_set_rxbuf(self, 0, NULL); } else { // read buffer using interrupts size_t len = args.read_buf_len.u_int + 1; // +1 to adjust for usable length of buffer uint8_t *buf = m_new(byte, len << self->char_width); uart_set_rxbuf(self, len, buf); } } #if RA_TODO // compute actual baudrate that was configured uint32_t actual_baudrate = uart_get_baudrate(self); // check we could set the baudrate within 5% uint32_t baudrate_diff; if (actual_baudrate > baudrate) { baudrate_diff = actual_baudrate - baudrate; } else { baudrate_diff = baudrate - actual_baudrate; } if (20 * baudrate_diff > actual_baudrate) { mp_raise_msg_varg(&mp_type_ValueError, MP_ERROR_TEXT("set baudrate %d is not within 5%% of desired value"), actual_baudrate); } #endif // enable_irq(irq_state); } /// \classmethod \constructor(bus, ...) /// /// Construct a UART object on the given bus. `bus` can be 1-6, or 'XA', 'XB', 'YA', or 'YB'. /// With no additional parameters, the UART object is created but not /// initialised (it has the settings from the last initialisation of /// the bus, if any). If extra arguments are given, the bus is initialised. /// See `init` for parameters of initialisation. /// /// The physical pins of the UART buses are: /// /// - `UART(4)` is on `XA`: `(TX, RX) = (X1, X2) = (PA0, PA1)` /// - `UART(1)` is on `XB`: `(TX, RX) = (X9, X10) = (PB6, PB7)` /// - `UART(6)` is on `YA`: `(TX, RX) = (Y1, Y2) = (PC6, PC7)` /// - `UART(3)` is on `YB`: `(TX, RX) = (Y9, Y10) = (PB10, PB11)` /// - `UART(2)` is on: `(TX, RX) = (X3, X4) = (PA2, PA3)` static mp_obj_t mp_machine_uart_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *args) { // check arguments mp_arg_check_num(n_args, n_kw, 1, MP_OBJ_FUN_ARGS_MAX, true); // work out port int uart_id = 0; if (mp_obj_is_str(args[0])) { const char *port = mp_obj_str_get_str(args[0]); if (0) { #ifdef MICROPY_HW_UART0_NAME } else if (strcmp(port, MICROPY_HW_UART0_NAME) == 0) { uart_id = HW_UART_0; #endif #ifdef MICROPY_HW_UART1_NAME } else if (strcmp(port, MICROPY_HW_UART1_NAME) == 0) { uart_id = HW_UART_1; #endif #ifdef MICROPY_HW_UART2_NAME } else if (strcmp(port, MICROPY_HW_UART2_NAME) == 0) { uart_id = HW_UART_2; #endif #ifdef MICROPY_HW_UART3_NAME } else if (strcmp(port, MICROPY_HW_UART3_NAME) == 0) { uart_id = HW_UART_3; #endif #ifdef MICROPY_HW_UART4_NAME } else if (strcmp(port, MICROPY_HW_UART4_NAME) == 0) { uart_id = HW_UART_4; #endif #ifdef MICROPY_HW_UART5_NAME } else if (strcmp(port, MICROPY_HW_UART5_NAME) == 0) { uart_id = HW_UART_5; #endif #ifdef MICROPY_HW_UART6_NAME } else if (strcmp(port, MICROPY_HW_UART6_NAME) == 0) { uart_id = HW_UART_6; #endif #ifdef MICROPY_HW_UART7_NAME } else if (strcmp(port, MICROPY_HW_UART7_NAME) == 0) { uart_id = HW_UART_7; #endif #ifdef MICROPY_HW_UART8_NAME } else if (strcmp(port, MICROPY_HW_UART8_NAME) == 0) { uart_id = HW_UART_8; #endif #ifdef MICROPY_HW_UART9_NAME } else if (strcmp(port, MICROPY_HW_UART9_NAME) == 0) { uart_id = HW_UART_9; #endif } else { mp_raise_msg_varg(&mp_type_ValueError, MP_ERROR_TEXT("UART(%s) doesn't exist"), port); } } else { uart_id = mp_obj_get_int(args[0]); if (!uart_exists(uart_id)) { mp_raise_msg_varg(&mp_type_ValueError, MP_ERROR_TEXT("UART(%d) doesn't exist"), uart_id); } } // check if the UART is reserved for system use or not if (MICROPY_HW_UART_IS_RESERVED(uart_id)) { mp_raise_msg_varg(&mp_type_ValueError, MP_ERROR_TEXT("UART(%d) is reserved"), uart_id); } machine_uart_obj_t *self; if (MP_STATE_PORT(machine_uart_obj_all)[uart_id] == NULL) { // create new UART object self = m_new0(machine_uart_obj_t, 1); self->base.type = &machine_uart_type; self->uart_id = uart_id; MP_STATE_PORT(machine_uart_obj_all)[uart_id] = self; } else { // reference existing UART object self = MP_STATE_PORT(machine_uart_obj_all)[uart_id]; } // start the peripheral mp_map_t kw_args; mp_map_init_fixed_table(&kw_args, n_kw, args + n_args); mp_machine_uart_init_helper(self, n_args - 1, args + 1, &kw_args); return MP_OBJ_FROM_PTR(self); } // Turn off the UART bus. static void mp_machine_uart_deinit(machine_uart_obj_t *self) { uart_deinit(self); } // Return number of characters waiting. static mp_int_t mp_machine_uart_any(machine_uart_obj_t *self) { return uart_rx_any(self); } // Return `true` if all characters have been sent. static bool mp_machine_uart_txdone(machine_uart_obj_t *self) { return !uart_tx_busy(self); } // Send a break condition. static void mp_machine_uart_sendbreak(machine_uart_obj_t *self) { ra_sci_tx_break((uint32_t)self->uart_id); } // Write a single character on the bus. `data` is an integer to write. static void mp_machine_uart_writechar(machine_uart_obj_t *self, uint16_t data) { int errcode; if (uart_tx_wait(self, self->timeout)) { uart_tx_data(self, &data, 1, &errcode); } else { errcode = MP_ETIMEDOUT; } if (errcode != 0) { mp_raise_OSError(errcode); } } // Receive a single character on the bus. // Return value: The character read, as an integer. Returns -1 on timeout. static mp_int_t mp_machine_uart_readchar(machine_uart_obj_t *self) { if (uart_rx_wait(self, self->timeout)) { return uart_rx_char(self); } else { // return -1 on timeout return -1; } } static mp_irq_obj_t *mp_machine_uart_irq(machine_uart_obj_t *self, bool any_args, mp_arg_val_t *args) { if (self->mp_irq_obj == NULL) { self->mp_irq_trigger = 0; self->mp_irq_obj = mp_irq_new(&uart_irq_methods, MP_OBJ_FROM_PTR(self)); } if (any_args) { // Check the handler mp_obj_t handler = args[MP_IRQ_ARG_INIT_handler].u_obj; if (handler != mp_const_none && !mp_obj_is_callable(handler)) { mp_raise_ValueError(MP_ERROR_TEXT("handler must be None or callable")); } // Check the trigger mp_uint_t trigger = args[MP_IRQ_ARG_INIT_trigger].u_int; mp_uint_t not_supported = trigger & ~MP_UART_ALLOWED_FLAGS; if (trigger != 0 && not_supported) { mp_raise_msg_varg(&mp_type_ValueError, MP_ERROR_TEXT("trigger 0x%08x unsupported"), not_supported); } // Reconfigure user IRQs uart_irq_config(self, false); self->mp_irq_obj->handler = handler; self->mp_irq_obj->ishard = args[MP_IRQ_ARG_INIT_hard].u_bool; self->mp_irq_trigger = trigger; uart_irq_config(self, true); } return self->mp_irq_obj; } static mp_uint_t mp_machine_uart_read(mp_obj_t self_in, void *buf_in, mp_uint_t size, int *errcode) { machine_uart_obj_t *self = MP_OBJ_TO_PTR(self_in); byte *buf = buf_in; // check that size is a multiple of character width if (size & self->char_width) { *errcode = MP_EIO; return MP_STREAM_ERROR; } // convert byte size to char size size >>= self->char_width; // make sure we want at least 1 char if (size == 0) { return 0; } // wait for first char to become available if (!uart_rx_wait(self, self->timeout)) { // return EAGAIN error to indicate non-blocking (then read() method returns None) *errcode = MP_EAGAIN; return MP_STREAM_ERROR; } // read the data byte *orig_buf = buf; for (;;) { int data = uart_rx_char(self); if (self->char_width == CHAR_WIDTH_9BIT) { *(uint16_t *)buf = data; buf += 2; } else { *buf++ = data; } if (--size == 0 || !uart_rx_wait(self, self->timeout_char)) { // return number of bytes read return buf - orig_buf; } } } static mp_uint_t mp_machine_uart_write(mp_obj_t self_in, const void *buf_in, mp_uint_t size, int *errcode) { machine_uart_obj_t *self = MP_OBJ_TO_PTR(self_in); const byte *buf = buf_in; // check that size is a multiple of character width if (size & self->char_width) { *errcode = MP_EIO; return MP_STREAM_ERROR; } // wait to be able to write the first character. EAGAIN causes write to return None if (self->timeout != 0) { if (!uart_tx_wait(self, self->timeout)) { *errcode = MP_EAGAIN; return MP_STREAM_ERROR; } } // write the data size_t num_tx = uart_tx_data(self, buf, size >> self->char_width, errcode); if (*errcode == 0 || *errcode == MP_ETIMEDOUT) { // return number of bytes written, even if there was a timeout return num_tx << self->char_width; } else { return MP_STREAM_ERROR; } } static mp_uint_t mp_machine_uart_ioctl(mp_obj_t self_in, mp_uint_t request, uintptr_t arg, int *errcode) { machine_uart_obj_t *self = MP_OBJ_TO_PTR(self_in); mp_uint_t ret; if (request == MP_STREAM_POLL) { uintptr_t flags = arg; ret = 0; if ((flags & MP_STREAM_POLL_RD) && uart_rx_any(self)) { ret |= MP_STREAM_POLL_RD; } if ((flags & MP_STREAM_POLL_WR) && uart_tx_avail(self)) { ret |= MP_STREAM_POLL_WR; } } else if (request == MP_STREAM_FLUSH) { // The timeout is estimated using the buffer size and the baudrate. // Take the worst case assumptions at 13 bit symbol size times 2. uint32_t timeout = mp_hal_ticks_ms() + (uint32_t)(uart_tx_txbuf(self)) * 13000ll * 2 / self->baudrate; do { if (!uart_tx_busy(self)) { return 0; } MICROPY_EVENT_POLL_HOOK } while (mp_hal_ticks_ms() < timeout); *errcode = MP_ETIMEDOUT; ret = MP_STREAM_ERROR; } else { *errcode = MP_EINVAL; ret = MP_STREAM_ERROR; } return ret; } MP_REGISTER_ROOT_POINTER(struct _machine_uart_obj_t *machine_uart_obj_all[MICROPY_HW_MAX_UART + MICROPY_HW_MAX_LPUART]);