/* * This file is part of the MicroPython project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2017 Nick Moore * Copyright (c) 2023 Vekatech Ltd. * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include #include "py/runtime.h" #include "py/mphal.h" #include "py/mperrno.h" #include "pin.h" #include "ra/ra_dac.h" #include "modmachine.h" #if MICROPY_PY_MACHINE_DAC typedef struct _machine_dac_obj_t { mp_obj_base_t base; uint8_t active; uint8_t ch; uint16_t mv; mp_hal_pin_obj_t dac; } machine_dac_obj_t; static machine_dac_obj_t machine_dac_obj[] = { #if defined(MICROPY_HW_DAC0) {{&machine_dac_type}, 0, 0, 0, MICROPY_HW_DAC0}, #endif #if defined(MICROPY_HW_DAC1) {{&machine_dac_type}, 0, 1, 0, MICROPY_HW_DAC1} #endif }; static void machine_dac_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) { machine_dac_obj_t *self = MP_OBJ_TO_PTR(self_in); // const char *qstr_str(qstr q); mp_printf(print, "DAC(DA%d [#%d], active=%u, out=%u mV)", self->ch, self->dac->pin, self->active, self->mv); } static mp_obj_t machine_dac_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *args) { mp_hal_pin_obj_t pin_id = MP_OBJ_NULL; machine_dac_obj_t *self = MP_OBJ_NULL; enum { ARG_pin }; static const mp_arg_t allowed_args[] = { { MP_QSTR_pin, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} } }; mp_arg_check_num(n_args, n_kw, 1, 1, true); mp_arg_val_t init_args[MP_ARRAY_SIZE(allowed_args)]; mp_arg_parse_all_kw_array(n_args, n_kw, args, MP_ARRAY_SIZE(allowed_args), allowed_args, init_args); // Get GPIO and optional device to connect to DAC. pin_id = mp_hal_get_pin_obj(init_args[ARG_pin].u_obj); if (pin_id) { for (int i = 0; i < MP_ARRAY_SIZE(machine_dac_obj); i++) { if (pin_id->pin == machine_dac_obj[i].dac->pin) { self = &machine_dac_obj[i]; break; } } if (self) { if (ra_dac_is_dac_pin(self->dac->pin)) { ra_dac_init(self->dac->pin, self->ch); self->active = ra_dac_is_running(self->ch); } else { mp_raise_msg_varg(&mp_type_ValueError, MP_ERROR_TEXT("Pin(%d) has no DAC output"), self->dac->pin); } } else { mp_raise_msg_varg(&mp_type_ValueError, MP_ERROR_TEXT("Pin(%d) is used with other peripheral"), pin_id->pin); } } else { mp_raise_ValueError(MP_ERROR_TEXT("Pin doesn't exist")); } return MP_OBJ_FROM_PTR(self); } // DAC.deinit() static mp_obj_t machine_dac_deinit(mp_obj_t self_in) { machine_dac_obj_t *self = MP_OBJ_TO_PTR(self_in); ra_dac_deinit(self->dac->pin, self->ch); self->active = ra_dac_is_running(self->ch); self->ch = 0; self->mv = 0; return mp_const_none; } static MP_DEFINE_CONST_FUN_OBJ_1(machine_dac_deinit_obj, machine_dac_deinit); // DAC.write(value) static mp_obj_t machine_dac_write(mp_obj_t self_in, mp_obj_t data) { // mp_obj_t value_in machine_dac_obj_t *self = MP_OBJ_TO_PTR(self_in); mp_int_t value = mp_obj_get_int(data); if (value < 0 || value > 4095) { mp_raise_ValueError(MP_ERROR_TEXT("value should be 0-4095")); } else if (self->active) { ra_dac_write(self->ch, value); self->mv = (value * 3300) / 4095; } return mp_const_none; } static MP_DEFINE_CONST_FUN_OBJ_2(machine_dac_write_obj, machine_dac_write); // DAC.read() static mp_obj_t machine_dac_read(mp_obj_t self_in) { machine_dac_obj_t *self = MP_OBJ_TO_PTR(self_in); return MP_OBJ_NEW_SMALL_INT(ra_dac_read(self->ch)); } static MP_DEFINE_CONST_FUN_OBJ_1(machine_dac_read_obj, machine_dac_read); // DAC.write_mv(Vout) static mp_obj_t machine_dac_write_mv(mp_obj_t self_in, mp_obj_t data) { // mp_obj_t self_in, mp_obj_t value_in machine_dac_obj_t *self = MP_OBJ_TO_PTR(self_in); mp_int_t Vout = mp_obj_get_int(data); if (Vout < 0 || Vout > 3300) { mp_raise_ValueError(MP_ERROR_TEXT("value should be 0-3300")); } else if (self->active) { uint16_t Dout = (Vout * 4095) / 3300; ra_dac_write(self->ch, Dout); self->mv = Vout; } return mp_const_none; } static MP_DEFINE_CONST_FUN_OBJ_2(machine_dac_write_mv_obj, machine_dac_write_mv); // DAC.read_mv() static mp_obj_t machine_dac_read_mv(mp_obj_t self_in) { machine_dac_obj_t *self = MP_OBJ_TO_PTR(self_in); return MP_OBJ_NEW_SMALL_INT(self->mv); } static MP_DEFINE_CONST_FUN_OBJ_1(machine_dac_read_mv_obj, machine_dac_read_mv); // MP_DEFINE_CONST_FUN_OBJ_2(mp_machine_dac_write_obj, mp_machine_dac_write); static const mp_rom_map_elem_t machine_dac_locals_dict_table[] = { { MP_ROM_QSTR(MP_QSTR_deinit), MP_ROM_PTR(&machine_dac_deinit_obj) }, { MP_ROM_QSTR(MP_QSTR_read), MP_ROM_PTR(&machine_dac_read_obj) }, { MP_ROM_QSTR(MP_QSTR_write), MP_ROM_PTR(&machine_dac_write_obj) }, { MP_ROM_QSTR(MP_QSTR_read_mv), MP_ROM_PTR(&machine_dac_read_mv_obj) }, { MP_ROM_QSTR(MP_QSTR_write_mv), MP_ROM_PTR(&machine_dac_write_mv_obj) } }; static MP_DEFINE_CONST_DICT(machine_dac_locals_dict, machine_dac_locals_dict_table); MP_DEFINE_CONST_OBJ_TYPE( machine_dac_type, MP_QSTR_DAC, MP_TYPE_FLAG_NONE, make_new, machine_dac_make_new, print, machine_dac_print, locals_dict, &machine_dac_locals_dict ); #endif // MICROPY_PY_MACHINE_DAC