/* * This file is part of the MicroPython project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2013-2016 Damien P. George * Copyright (c) 2021,2022 Renesas Electronics Corporation * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include #include "py/runtime.h" #include "py/mphal.h" #include "timer.h" #include "led.h" #include "pin.h" #if defined(MICROPY_HW_LED1) /// \moduleref pyb /// \class LED - LED object /// /// The LED object controls an individual LED (Light Emitting Diode). // the default is that LEDs are not inverted, and pin driven high turns them on #ifndef MICROPY_HW_LED_INVERTED #define MICROPY_HW_LED_INVERTED (0) #endif typedef struct _ra_led_obj_t { mp_obj_base_t base; mp_uint_t led_id; const machine_pin_obj_t *led_pin; } ra_led_obj_t; static const ra_led_obj_t ra_led_obj[] = { {{&ra_led_type}, 1, MICROPY_HW_LED1}, #if defined(MICROPY_HW_LED2) {{&ra_led_type}, 2, MICROPY_HW_LED2}, #if defined(MICROPY_HW_LED3) {{&ra_led_type}, 3, MICROPY_HW_LED3}, #if defined(MICROPY_HW_LED4) {{&ra_led_type}, 4, MICROPY_HW_LED4}, #endif #endif #endif }; #define NUM_LEDS MP_ARRAY_SIZE(ra_led_obj) void led_init(void) { /* Turn off LEDs and initialize */ for (int led = 0; led < NUM_LEDS; led++) { const machine_pin_obj_t *led_pin = ra_led_obj[led].led_pin; MICROPY_HW_LED_OFF(led_pin); mp_hal_pin_output(led_pin); } } void led_state(ra_led_t led, int state) { if (led < 1 || led > NUM_LEDS) { return; } const machine_pin_obj_t *led_pin = ra_led_obj[led - 1].led_pin; // printf("led_state(%d,%d)\n", led, state); if (state == 0) { // turn LED off MICROPY_HW_LED_OFF(led_pin); } else { // turn LED on MICROPY_HW_LED_ON(led_pin); } } void led_toggle(ra_led_t led) { if (led < 1 || led > NUM_LEDS) { return; } const machine_pin_obj_t *led_pin = ra_led_obj[led - 1].led_pin; MICROPY_HW_LED_TOGGLE(led_pin); } void led_debug(int n, int delay) { led_state(1, n & 1); led_state(2, n & 2); led_state(3, n & 4); led_state(4, n & 8); mp_hal_delay_ms(delay); } /******************************************************************************/ /* MicroPython bindings */ void led_obj_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) { ra_led_obj_t *self = MP_OBJ_TO_PTR(self_in); mp_printf(print, "LED(%u)", self->led_id); } /// \classmethod \constructor(id) /// Create an LED object associated with the given LED: /// /// - `id` is the LED number, 1-4. static mp_obj_t led_obj_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *args) { // check arguments mp_arg_check_num(n_args, n_kw, 1, 1, false); // get led number mp_int_t led_id = mp_obj_get_int(args[0]); // check led number if (!(1 <= led_id && led_id <= NUM_LEDS)) { mp_raise_msg_varg(&mp_type_ValueError, MP_ERROR_TEXT("LED(%d) doesn't exist"), led_id); } // return static led object return MP_OBJ_FROM_PTR(&ra_led_obj[led_id - 1]); } /// \method on() /// Turn the LED on. mp_obj_t led_obj_on(mp_obj_t self_in) { ra_led_obj_t *self = MP_OBJ_TO_PTR(self_in); led_state(self->led_id, 1); return mp_const_none; } /// \method off() /// Turn the LED off. mp_obj_t led_obj_off(mp_obj_t self_in) { ra_led_obj_t *self = MP_OBJ_TO_PTR(self_in); led_state(self->led_id, 0); return mp_const_none; } /// \method toggle() /// Toggle the LED between on and off. mp_obj_t led_obj_toggle(mp_obj_t self_in) { ra_led_obj_t *self = MP_OBJ_TO_PTR(self_in); led_toggle(self->led_id); return mp_const_none; } static MP_DEFINE_CONST_FUN_OBJ_1(led_obj_on_obj, led_obj_on); static MP_DEFINE_CONST_FUN_OBJ_1(led_obj_off_obj, led_obj_off); static MP_DEFINE_CONST_FUN_OBJ_1(led_obj_toggle_obj, led_obj_toggle); static const mp_rom_map_elem_t led_locals_dict_table[] = { { MP_ROM_QSTR(MP_QSTR_on), MP_ROM_PTR(&led_obj_on_obj) }, { MP_ROM_QSTR(MP_QSTR_off), MP_ROM_PTR(&led_obj_off_obj) }, { MP_ROM_QSTR(MP_QSTR_toggle), MP_ROM_PTR(&led_obj_toggle_obj) }, }; static MP_DEFINE_CONST_DICT(led_locals_dict, led_locals_dict_table); MP_DEFINE_CONST_OBJ_TYPE( ra_led_type, MP_QSTR_LED, MP_TYPE_FLAG_NONE, make_new, led_obj_make_new, locals_dict, &led_locals_dict, print, led_obj_print ); #else // For boards with no LEDs, we leave an empty function here so that we don't // have to put conditionals everywhere. void led_init(void) { } void led_state(ra_led_t led, int state) { } void led_toggle(ra_led_t led) { } #endif // defined(MICROPY_HW_LED1)