/* * This file is part of the MicroPython project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2017 Damien P. George * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include #include #include "py/runtime.h" #include "py/objstr.h" #include "py/mperrno.h" #include "extmod/vfs.h" #if MICROPY_VFS #if MICROPY_VFS_FAT #include "extmod/vfs_fat.h" #endif #if MICROPY_VFS_LFS1 || MICROPY_VFS_LFS2 #include "extmod/vfs_lfs.h" #endif #if MICROPY_VFS_POSIX #include "extmod/vfs_posix.h" #endif // For mp_vfs_proxy_call, the maximum number of additional args that can be passed. // A fixed maximum size is used to avoid the need for a costly variable array. #define PROXY_MAX_ARGS (2) // path is the path to lookup and *path_out holds the path within the VFS // object (starts with / if an absolute path). // Returns MP_VFS_ROOT for root dir (and then path_out is undefined) and // MP_VFS_NONE for path not found. mp_vfs_mount_t *mp_vfs_lookup_path(const char *path, const char **path_out) { if (*path == '/' || MP_STATE_VM(vfs_cur) == MP_VFS_ROOT) { // an absolute path, or the current volume is root, so search root dir bool is_abs = 0; if (*path == '/') { ++path; is_abs = 1; } if (*path == '\0') { // path is "" or "/" so return virtual root return MP_VFS_ROOT; } for (mp_vfs_mount_t *vfs = MP_STATE_VM(vfs_mount_table); vfs != NULL; vfs = vfs->next) { size_t len = vfs->len - 1; if (len == 0) { *path_out = path - is_abs; return vfs; } if (strncmp(path, vfs->str + 1, len) == 0) { if (path[len] == '/') { *path_out = path + len; return vfs; } else if (path[len] == '\0') { *path_out = "/"; return vfs; } } } // if we get here then there's nothing mounted on /, so the path doesn't exist return MP_VFS_NONE; } // a relative path within a mounted device *path_out = path; return MP_STATE_VM(vfs_cur); } // Version of mp_vfs_lookup_path that takes and returns uPy string objects. static mp_vfs_mount_t *lookup_path(mp_obj_t path_in, mp_obj_t *path_out) { const char *path = mp_obj_str_get_str(path_in); const char *p_out; mp_vfs_mount_t *vfs = mp_vfs_lookup_path(path, &p_out); if (vfs != MP_VFS_NONE && vfs != MP_VFS_ROOT) { *path_out = mp_obj_new_str_of_type(mp_obj_get_type(path_in), (const byte *)p_out, strlen(p_out)); } else { *path_out = MP_OBJ_NULL; } return vfs; } static mp_obj_t mp_vfs_proxy_call(mp_vfs_mount_t *vfs, qstr meth_name, size_t n_args, const mp_obj_t *args) { assert(n_args <= PROXY_MAX_ARGS); if (vfs == MP_VFS_NONE) { // mount point not found mp_raise_OSError(MP_ENODEV); } if (vfs == MP_VFS_ROOT) { // can't do operation on root dir mp_raise_OSError(MP_EPERM); } mp_obj_t meth[2 + PROXY_MAX_ARGS]; mp_load_method(vfs->obj, meth_name, meth); if (args != NULL) { memcpy(meth + 2, args, n_args * sizeof(*args)); } return mp_call_method_n_kw(n_args, 0, meth); } mp_import_stat_t mp_vfs_import_stat(const char *path) { const char *path_out; mp_vfs_mount_t *vfs = mp_vfs_lookup_path(path, &path_out); if (vfs == MP_VFS_NONE || vfs == MP_VFS_ROOT) { return MP_IMPORT_STAT_NO_EXIST; } // If the mounted object has the VFS protocol, call its import_stat helper const mp_obj_type_t *type = mp_obj_get_type(vfs->obj); if (MP_OBJ_TYPE_HAS_SLOT(type, protocol)) { const mp_vfs_proto_t *proto = MP_OBJ_TYPE_GET_SLOT(type, protocol); return proto->import_stat(MP_OBJ_TO_PTR(vfs->obj), path_out); } // delegate to vfs.stat() method mp_obj_t path_o = mp_obj_new_str(path_out, strlen(path_out)); mp_obj_t stat; nlr_buf_t nlr; if (nlr_push(&nlr) == 0) { stat = mp_vfs_proxy_call(vfs, MP_QSTR_stat, 1, &path_o); nlr_pop(); } else { // assume an exception means that the path is not found return MP_IMPORT_STAT_NO_EXIST; } mp_obj_t *items; mp_obj_get_array_fixed_n(stat, 10, &items); mp_int_t st_mode = mp_obj_get_int(items[0]); if (st_mode & MP_S_IFDIR) { return MP_IMPORT_STAT_DIR; } else { return MP_IMPORT_STAT_FILE; } } static mp_obj_t mp_vfs_autodetect(mp_obj_t bdev_obj) { #if MICROPY_VFS_LFS1 || MICROPY_VFS_LFS2 nlr_buf_t nlr; if (nlr_push(&nlr) == 0) { // The superblock for littlefs is in both block 0 and 1, but block 0 may be erased // or partially written, so search both blocks 0 and 1 for the littlefs signature. mp_vfs_blockdev_t blockdev; mp_vfs_blockdev_init(&blockdev, bdev_obj); uint8_t buf[44]; for (size_t block_num = 0; block_num <= 1; ++block_num) { mp_vfs_blockdev_read_ext(&blockdev, block_num, 8, sizeof(buf), buf); #if MICROPY_VFS_LFS1 if (memcmp(&buf[32], "littlefs", 8) == 0) { // LFS1 mp_obj_t vfs = MP_OBJ_TYPE_GET_SLOT(&mp_type_vfs_lfs1, make_new)(&mp_type_vfs_lfs1, 1, 0, &bdev_obj); nlr_pop(); return vfs; } #endif #if MICROPY_VFS_LFS2 if (memcmp(&buf[0], "littlefs", 8) == 0) { // LFS2 mp_obj_t vfs = MP_OBJ_TYPE_GET_SLOT(&mp_type_vfs_lfs2, make_new)(&mp_type_vfs_lfs2, 1, 0, &bdev_obj); nlr_pop(); return vfs; } #endif } nlr_pop(); } else { // Ignore exception (eg block device doesn't support extended readblocks) } #endif #if MICROPY_VFS_FAT return MP_OBJ_TYPE_GET_SLOT(&mp_fat_vfs_type, make_new)(&mp_fat_vfs_type, 1, 0, &bdev_obj); #endif // no filesystem found mp_raise_OSError(MP_ENODEV); } mp_obj_t mp_vfs_mount(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) { enum { ARG_readonly, ARG_mkfs }; static const mp_arg_t allowed_args[] = { { MP_QSTR_readonly, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_rom_obj = MP_ROM_FALSE} }, { MP_QSTR_mkfs, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_rom_obj = MP_ROM_FALSE} }, }; // parse args mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)]; mp_arg_parse_all(n_args - 2, pos_args + 2, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args); // get the mount point size_t mnt_len; const char *mnt_str = mp_obj_str_get_data(pos_args[1], &mnt_len); // see if we need to auto-detect and create the filesystem mp_obj_t vfs_obj = pos_args[0]; mp_obj_t dest[2]; mp_load_method_maybe(vfs_obj, MP_QSTR_mount, dest); if (dest[0] == MP_OBJ_NULL) { // Input object has no mount method, assume it's a block device and try to // auto-detect the filesystem and create the corresponding VFS entity. vfs_obj = mp_vfs_autodetect(vfs_obj); } // create new object mp_vfs_mount_t *vfs = m_new_obj(mp_vfs_mount_t); vfs->str = mnt_str; vfs->len = mnt_len; vfs->obj = vfs_obj; vfs->next = NULL; // call the underlying object to do any mounting operation mp_vfs_proxy_call(vfs, MP_QSTR_mount, 2, (mp_obj_t *)&args); // check that the destination mount point is unused const char *path_out; mp_vfs_mount_t *existing_mount = mp_vfs_lookup_path(mp_obj_str_get_str(pos_args[1]), &path_out); if (existing_mount != MP_VFS_NONE && existing_mount != MP_VFS_ROOT) { if (vfs->len != 1 && existing_mount->len == 1) { // if root dir is mounted, still allow to mount something within a subdir of root } else { // mount point in use mp_raise_OSError(MP_EPERM); } } // insert the vfs into the mount table mp_vfs_mount_t **vfsp = &MP_STATE_VM(vfs_mount_table); while (*vfsp != NULL) { if ((*vfsp)->len == 1) { // make sure anything mounted at the root stays at the end of the list vfs->next = *vfsp; break; } vfsp = &(*vfsp)->next; } *vfsp = vfs; return mp_const_none; } MP_DEFINE_CONST_FUN_OBJ_KW(mp_vfs_mount_obj, 2, mp_vfs_mount); mp_obj_t mp_vfs_umount(mp_obj_t mnt_in) { // remove vfs from the mount table mp_vfs_mount_t *vfs = NULL; size_t mnt_len; const char *mnt_str = NULL; if (mp_obj_is_str(mnt_in)) { mnt_str = mp_obj_str_get_data(mnt_in, &mnt_len); } for (mp_vfs_mount_t **vfsp = &MP_STATE_VM(vfs_mount_table); *vfsp != NULL; vfsp = &(*vfsp)->next) { if ((mnt_str != NULL && !memcmp(mnt_str, (*vfsp)->str, mnt_len + 1)) || (*vfsp)->obj == mnt_in) { vfs = *vfsp; *vfsp = (*vfsp)->next; break; } } if (vfs == NULL) { mp_raise_OSError(MP_EINVAL); } // if we unmounted the current device then set current to root if (MP_STATE_VM(vfs_cur) == vfs) { MP_STATE_VM(vfs_cur) = MP_VFS_ROOT; } // call the underlying object to do any unmounting operation mp_vfs_proxy_call(vfs, MP_QSTR_umount, 0, NULL); return mp_const_none; } MP_DEFINE_CONST_FUN_OBJ_1(mp_vfs_umount_obj, mp_vfs_umount); // Note: buffering and encoding args are currently ignored mp_obj_t mp_vfs_open(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) { enum { ARG_file, ARG_mode, ARG_encoding }; static const mp_arg_t allowed_args[] = { { MP_QSTR_file, MP_ARG_OBJ | MP_ARG_REQUIRED, {.u_rom_obj = MP_ROM_NONE} }, { MP_QSTR_mode, MP_ARG_OBJ, {.u_rom_obj = MP_ROM_QSTR(MP_QSTR_r)} }, { MP_QSTR_buffering, MP_ARG_INT, {.u_int = -1} }, { MP_QSTR_encoding, MP_ARG_OBJ, {.u_rom_obj = MP_ROM_NONE} }, }; // parse args mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)]; mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args); #if MICROPY_VFS_POSIX // If the file is an integer then delegate straight to the POSIX handler if (mp_obj_is_small_int(args[ARG_file].u_obj)) { return mp_vfs_posix_file_open(&mp_type_vfs_posix_textio, args[ARG_file].u_obj, args[ARG_mode].u_obj); } #endif mp_vfs_mount_t *vfs = lookup_path(args[ARG_file].u_obj, &args[ARG_file].u_obj); return mp_vfs_proxy_call(vfs, MP_QSTR_open, 2, (mp_obj_t *)&args); } MP_DEFINE_CONST_FUN_OBJ_KW(mp_vfs_open_obj, 0, mp_vfs_open); mp_obj_t mp_vfs_chdir(mp_obj_t path_in) { mp_obj_t path_out; mp_vfs_mount_t *vfs = lookup_path(path_in, &path_out); if (vfs == MP_VFS_ROOT) { // If we change to the root dir and a VFS is mounted at the root then // we must change that VFS's current dir to the root dir so that any // subsequent relative paths begin at the root of that VFS. for (vfs = MP_STATE_VM(vfs_mount_table); vfs != NULL; vfs = vfs->next) { if (vfs->len == 1) { mp_obj_t root = MP_OBJ_NEW_QSTR(MP_QSTR__slash_); mp_vfs_proxy_call(vfs, MP_QSTR_chdir, 1, &root); break; } } vfs = MP_VFS_ROOT; } else { mp_vfs_proxy_call(vfs, MP_QSTR_chdir, 1, &path_out); } MP_STATE_VM(vfs_cur) = vfs; return mp_const_none; } MP_DEFINE_CONST_FUN_OBJ_1(mp_vfs_chdir_obj, mp_vfs_chdir); mp_obj_t mp_vfs_getcwd(void) { if (MP_STATE_VM(vfs_cur) == MP_VFS_ROOT) { return MP_OBJ_NEW_QSTR(MP_QSTR__slash_); } mp_obj_t cwd_o = mp_vfs_proxy_call(MP_STATE_VM(vfs_cur), MP_QSTR_getcwd, 0, NULL); if (MP_STATE_VM(vfs_cur)->len == 1) { // don't prepend "/" for vfs mounted at root return cwd_o; } const char *cwd = mp_obj_str_get_str(cwd_o); vstr_t vstr; vstr_init(&vstr, MP_STATE_VM(vfs_cur)->len + strlen(cwd) + 1); vstr_add_strn(&vstr, MP_STATE_VM(vfs_cur)->str, MP_STATE_VM(vfs_cur)->len); if (!(cwd[0] == '/' && cwd[1] == 0)) { vstr_add_str(&vstr, cwd); } return mp_obj_new_str_from_vstr(&vstr); } MP_DEFINE_CONST_FUN_OBJ_0(mp_vfs_getcwd_obj, mp_vfs_getcwd); typedef struct _mp_vfs_ilistdir_it_t { mp_obj_base_t base; mp_fun_1_t iternext; union { mp_vfs_mount_t *vfs; mp_obj_t iter; } cur; bool is_str; bool is_iter; } mp_vfs_ilistdir_it_t; static mp_obj_t mp_vfs_ilistdir_it_iternext(mp_obj_t self_in) { mp_vfs_ilistdir_it_t *self = MP_OBJ_TO_PTR(self_in); if (self->is_iter) { // continue delegating to root dir return mp_iternext(self->cur.iter); } else if (self->cur.vfs == NULL) { // finished iterating mount points and no root dir is mounted return MP_OBJ_STOP_ITERATION; } else { // continue iterating mount points mp_vfs_mount_t *vfs = self->cur.vfs; self->cur.vfs = vfs->next; if (vfs->len == 1) { // vfs is mounted at root dir, delegate to it mp_obj_t root = MP_OBJ_NEW_QSTR(MP_QSTR__slash_); self->is_iter = true; self->cur.iter = mp_vfs_proxy_call(vfs, MP_QSTR_ilistdir, 1, &root); return mp_iternext(self->cur.iter); } else { // a mounted directory mp_obj_tuple_t *t = MP_OBJ_TO_PTR(mp_obj_new_tuple(3, NULL)); t->items[0] = mp_obj_new_str_of_type( self->is_str ? &mp_type_str : &mp_type_bytes, (const byte *)vfs->str + 1, vfs->len - 1); t->items[1] = MP_OBJ_NEW_SMALL_INT(MP_S_IFDIR); t->items[2] = MP_OBJ_NEW_SMALL_INT(0); // no inode number return MP_OBJ_FROM_PTR(t); } } } mp_obj_t mp_vfs_ilistdir(size_t n_args, const mp_obj_t *args) { mp_obj_t path_in; if (n_args == 1) { path_in = args[0]; } else { path_in = MP_OBJ_NEW_QSTR(MP_QSTR_); } mp_obj_t path_out; mp_vfs_mount_t *vfs = lookup_path(path_in, &path_out); if (vfs == MP_VFS_ROOT) { // list the root directory mp_vfs_ilistdir_it_t *iter = mp_obj_malloc(mp_vfs_ilistdir_it_t, &mp_type_polymorph_iter); iter->iternext = mp_vfs_ilistdir_it_iternext; iter->cur.vfs = MP_STATE_VM(vfs_mount_table); iter->is_str = mp_obj_get_type(path_in) == &mp_type_str; iter->is_iter = false; return MP_OBJ_FROM_PTR(iter); } return mp_vfs_proxy_call(vfs, MP_QSTR_ilistdir, 1, &path_out); } MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(mp_vfs_ilistdir_obj, 0, 1, mp_vfs_ilistdir); mp_obj_t mp_vfs_listdir(size_t n_args, const mp_obj_t *args) { mp_obj_t iter = mp_vfs_ilistdir(n_args, args); mp_obj_t dir_list = mp_obj_new_list(0, NULL); mp_obj_t next; while ((next = mp_iternext(iter)) != MP_OBJ_STOP_ITERATION) { mp_obj_list_append(dir_list, mp_obj_subscr(next, MP_OBJ_NEW_SMALL_INT(0), MP_OBJ_SENTINEL)); } return dir_list; } MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(mp_vfs_listdir_obj, 0, 1, mp_vfs_listdir); mp_obj_t mp_vfs_mkdir(mp_obj_t path_in) { mp_obj_t path_out; mp_vfs_mount_t *vfs = lookup_path(path_in, &path_out); if (vfs == MP_VFS_ROOT || (vfs != MP_VFS_NONE && !strcmp(mp_obj_str_get_str(path_out), "/"))) { mp_raise_OSError(MP_EEXIST); } return mp_vfs_proxy_call(vfs, MP_QSTR_mkdir, 1, &path_out); } MP_DEFINE_CONST_FUN_OBJ_1(mp_vfs_mkdir_obj, mp_vfs_mkdir); mp_obj_t mp_vfs_remove(mp_obj_t path_in) { mp_obj_t path_out; mp_vfs_mount_t *vfs = lookup_path(path_in, &path_out); return mp_vfs_proxy_call(vfs, MP_QSTR_remove, 1, &path_out); } MP_DEFINE_CONST_FUN_OBJ_1(mp_vfs_remove_obj, mp_vfs_remove); mp_obj_t mp_vfs_rename(mp_obj_t old_path_in, mp_obj_t new_path_in) { mp_obj_t args[2]; mp_vfs_mount_t *old_vfs = lookup_path(old_path_in, &args[0]); mp_vfs_mount_t *new_vfs = lookup_path(new_path_in, &args[1]); if (old_vfs != new_vfs) { // can't rename across filesystems mp_raise_OSError(MP_EPERM); } return mp_vfs_proxy_call(old_vfs, MP_QSTR_rename, 2, args); } MP_DEFINE_CONST_FUN_OBJ_2(mp_vfs_rename_obj, mp_vfs_rename); mp_obj_t mp_vfs_rmdir(mp_obj_t path_in) { mp_obj_t path_out; mp_vfs_mount_t *vfs = lookup_path(path_in, &path_out); return mp_vfs_proxy_call(vfs, MP_QSTR_rmdir, 1, &path_out); } MP_DEFINE_CONST_FUN_OBJ_1(mp_vfs_rmdir_obj, mp_vfs_rmdir); mp_obj_t mp_vfs_stat(mp_obj_t path_in) { mp_obj_t path_out; mp_vfs_mount_t *vfs = lookup_path(path_in, &path_out); if (vfs == MP_VFS_ROOT) { mp_obj_tuple_t *t = MP_OBJ_TO_PTR(mp_obj_new_tuple(10, NULL)); t->items[0] = MP_OBJ_NEW_SMALL_INT(MP_S_IFDIR); // st_mode for (int i = 1; i <= 9; ++i) { t->items[i] = MP_OBJ_NEW_SMALL_INT(0); // dev, nlink, uid, gid, size, atime, mtime, ctime } return MP_OBJ_FROM_PTR(t); } return mp_vfs_proxy_call(vfs, MP_QSTR_stat, 1, &path_out); } MP_DEFINE_CONST_FUN_OBJ_1(mp_vfs_stat_obj, mp_vfs_stat); mp_obj_t mp_vfs_statvfs(mp_obj_t path_in) { mp_obj_t path_out; mp_vfs_mount_t *vfs = lookup_path(path_in, &path_out); if (vfs == MP_VFS_ROOT) { // statvfs called on the root directory, see if there's anything mounted there for (vfs = MP_STATE_VM(vfs_mount_table); vfs != NULL; vfs = vfs->next) { if (vfs->len == 1) { break; } } // If there's nothing mounted at root then return a mostly-empty tuple if (vfs == NULL) { mp_obj_tuple_t *t = MP_OBJ_TO_PTR(mp_obj_new_tuple(10, NULL)); // fill in: bsize, frsize, blocks, bfree, bavail, files, ffree, favail, flags for (int i = 0; i <= 8; ++i) { t->items[i] = MP_OBJ_NEW_SMALL_INT(0); } // Put something sensible in f_namemax t->items[9] = MP_OBJ_NEW_SMALL_INT(MICROPY_ALLOC_PATH_MAX); return MP_OBJ_FROM_PTR(t); } // VFS mounted at root so delegate the call to it path_out = MP_OBJ_NEW_QSTR(MP_QSTR__slash_); } return mp_vfs_proxy_call(vfs, MP_QSTR_statvfs, 1, &path_out); } MP_DEFINE_CONST_FUN_OBJ_1(mp_vfs_statvfs_obj, mp_vfs_statvfs); // This is a C-level helper function for ports to use if needed. int mp_vfs_mount_and_chdir_protected(mp_obj_t bdev, mp_obj_t mount_point) { nlr_buf_t nlr; mp_int_t ret = -MP_EIO; if (nlr_push(&nlr) == 0) { mp_obj_t args[] = { bdev, mount_point }; mp_vfs_mount(2, args, (mp_map_t *)&mp_const_empty_map); mp_vfs_chdir(mount_point); ret = 0; // success nlr_pop(); } else { mp_obj_base_t *exc = nlr.ret_val; if (mp_obj_is_subclass_fast(MP_OBJ_FROM_PTR(exc->type), MP_OBJ_FROM_PTR(&mp_type_OSError))) { mp_obj_t v = mp_obj_exception_get_value(MP_OBJ_FROM_PTR(exc)); mp_obj_get_int_maybe(v, &ret); // get errno value ret = -ret; } } return ret; } MP_REGISTER_ROOT_POINTER(struct _mp_vfs_mount_t *vfs_cur); MP_REGISTER_ROOT_POINTER(struct _mp_vfs_mount_t *vfs_mount_table); #endif // MICROPY_VFS