/* * This file is part of the MicroPython project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2023-2024 Arduino SA * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. * * OpenAMP's Python module. */ #if MICROPY_PY_OPENAMP #include #include "py/obj.h" #include "py/nlr.h" #include "py/runtime.h" #include "py/mpprint.h" #include "metal/sys.h" #include "metal/alloc.h" #include "metal/errno.h" #include "metal/io.h" #include "metal/device.h" #include "metal/utilities.h" #include "openamp/open_amp.h" #include "openamp/remoteproc.h" #include "openamp/remoteproc_loader.h" #include "modopenamp.h" #if !MICROPY_ENABLE_FINALISER #error "MICROPY_PY_OPENAMP requires MICROPY_ENABLE_FINALISER" #endif #if MICROPY_PY_OPENAMP_RSC_TABLE_ENABLE #define VIRTIO_DEV_ID 0xFF #define VIRTIO_DEV_FEATURES (1 << VIRTIO_RPMSG_F_NS) #define VRING0_ID 0 // VRING0 ID (host to remote) fixed to 0 for linux compatibility #define VRING1_ID 1 // VRING1 ID (remote to host) fixed to 1 for linux compatibility #define VRING_NOTIFY_ID VRING0_ID #define VRING_COUNT 2 #define VRING_ALIGNMENT 32 // Note the number of buffers must be a power of 2 #define VRING_NUM_BUFFS 64 // The following config should be enough for about 128 descriptors. // See lib/include/openamp/virtio_ring.h for the layout of vrings // and vring_size() to calculate the vring size. #define VRING_RX_ADDR (METAL_SHM_ADDR) #define VRING_TX_ADDR (METAL_SHM_ADDR + 0x1000) #define VRING_BUFF_ADDR (METAL_SHM_ADDR + 0x2000) #define VRING_BUFF_SIZE (METAL_SHM_SIZE - 0x2000) static const char openamp_trace_buf[128]; #define MICROPY_PY_OPENAMP_TRACE_BUF ((uint32_t)openamp_trace_buf) #define MICROPY_PY_OPENAMP_TRACE_BUF_LEN sizeof(MICROPY_PY_OPENAMP_TRACE_BUF) #endif // MICROPY_PY_OPENAMP_RSC_TABLE_ENABLE #if MICROPY_PY_OPENAMP_REMOTEPROC extern mp_obj_type_t openamp_remoteproc_type; #endif static struct metal_device shm_device = { .name = METAL_SHM_NAME, // The number of IO regions is fixed and must match the number and // layout of the remote processor's IO regions. The first region is // used for the vring shared memory, and the second one is used for // the shared resource table. .num_regions = METAL_MAX_DEVICE_REGIONS, .regions = { { 0 } }, .node = { NULL }, .irq_num = 0, .irq_info = NULL }; static metal_phys_addr_t shm_physmap[] = { 0 }; // ###################### Virtio device class ###################### typedef struct _virtio_dev_obj_t { mp_obj_base_t base; struct rpmsg_virtio_device rvdev; struct rpmsg_virtio_shm_pool shm_pool; mp_obj_t ns_callback; } virtio_dev_obj_t; static mp_obj_t virtio_dev_deinit(mp_obj_t self_in) { virtio_dev_obj_t *virtio_device = MP_OBJ_TO_PTR(self_in); rpmsg_deinit_vdev(&virtio_device->rvdev); metal_finish(); MP_STATE_PORT(virtio_device) = NULL; return mp_const_none; } static MP_DEFINE_CONST_FUN_OBJ_1(virtio_dev_deinit_obj, virtio_dev_deinit); static const mp_rom_map_elem_t virtio_dev_locals_dict_table[] = { { MP_ROM_QSTR(MP_QSTR___name__), MP_ROM_QSTR(MP_QSTR_VirtIODev) }, { MP_ROM_QSTR(MP_QSTR___del__), MP_ROM_PTR(&virtio_dev_deinit_obj) }, }; static MP_DEFINE_CONST_DICT(virtio_dev_locals_dict, virtio_dev_locals_dict_table); static MP_DEFINE_CONST_OBJ_TYPE( virtio_dev_type, MP_QSTR_VirtIODev, MP_TYPE_FLAG_NONE, locals_dict, &virtio_dev_locals_dict ); // ###################### RPMsg Endpoint class ###################### typedef struct _endpoint_obj_t { mp_obj_base_t base; mp_obj_t name; mp_obj_t callback; struct rpmsg_endpoint ep; } endpoint_obj_t; static const mp_obj_type_t endpoint_type; static int endpoint_recv_callback(struct rpmsg_endpoint *ept, void *data, size_t len, uint32_t src, void *priv) { metal_log(METAL_LOG_DEBUG, "endpoint_recv_callback() message received src: %lu msg len: %d\n", src, len); endpoint_obj_t *self = metal_container_of(ept, endpoint_obj_t, ep); if (self->callback != mp_const_none) { mp_call_function_2(self->callback, mp_obj_new_int(src), mp_obj_new_bytearray_by_ref(len, data)); } return 0; } static mp_obj_t endpoint_send(uint n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) { enum { ARG_src, ARG_dest, ARG_timeout }; static const mp_arg_t allowed_args[] = { { MP_QSTR_src, MP_ARG_INT | MP_ARG_KW_ONLY, {.u_int = -1 } }, { MP_QSTR_dest, MP_ARG_INT | MP_ARG_KW_ONLY, {.u_int = -1 } }, { MP_QSTR_timeout, MP_ARG_INT | MP_ARG_KW_ONLY, {.u_int = -1 } }, }; // Parse args. mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)]; mp_arg_parse_all(n_args - 2, pos_args + 2, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args); endpoint_obj_t *self = MP_OBJ_TO_PTR(pos_args[0]); if (is_rpmsg_ept_ready(&self->ep) == false) { mp_raise_msg(&mp_type_OSError, MP_ERROR_TEXT("Endpoint not ready")); } uint32_t src = self->ep.addr; if (args[ARG_src].u_int != -1) { src = args[ARG_src].u_int; } uint32_t dest = self->ep.dest_addr; if (args[ARG_dest].u_int != -1) { dest = args[ARG_dest].u_int; } mp_buffer_info_t rbuf; mp_get_buffer_raise(pos_args[1], &rbuf, MP_BUFFER_READ); metal_log(METAL_LOG_DEBUG, "endpoint_send() msg len: %d\n", rbuf.len); int bytes = 0; mp_int_t timeout = args[ARG_timeout].u_int; for (mp_uint_t start = mp_hal_ticks_ms(); ;) { bytes = rpmsg_send_offchannel_raw(&self->ep, src, dest, rbuf.buf, rbuf.len, false); if (bytes > 0 || timeout == 0) { MICROPY_EVENT_POLL_HOOK break; } if (timeout > 0 && (mp_hal_ticks_ms() - start > timeout)) { mp_raise_msg(&mp_type_OSError, MP_ERROR_TEXT("timeout waiting for a free buffer")); } MICROPY_EVENT_POLL_HOOK } return mp_obj_new_int(bytes); } static MP_DEFINE_CONST_FUN_OBJ_KW(endpoint_send_obj, 2, endpoint_send); static mp_obj_t endpoint_is_ready(mp_obj_t self_in) { endpoint_obj_t *self = MP_OBJ_TO_PTR(self_in); return is_rpmsg_ept_ready(&self->ep) ? mp_const_true : mp_const_false; } static MP_DEFINE_CONST_FUN_OBJ_1(endpoint_is_ready_obj, endpoint_is_ready); static mp_obj_t endpoint_deinit(mp_obj_t self_in) { endpoint_obj_t *self = MP_OBJ_TO_PTR(self_in); rpmsg_destroy_ept(&self->ep); return mp_const_none; } static MP_DEFINE_CONST_FUN_OBJ_1(endpoint_deinit_obj, endpoint_deinit); static mp_obj_t endpoint_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *all_args) { enum { ARG_name, ARG_callback, ARG_src, ARG_dest }; static const mp_arg_t allowed_args[] = { { MP_QSTR_name, MP_ARG_OBJ | MP_ARG_REQUIRED, {.u_rom_obj = MP_ROM_NONE } }, { MP_QSTR_callback, MP_ARG_OBJ | MP_ARG_REQUIRED, {.u_rom_obj = MP_ROM_NONE } }, { MP_QSTR_src, MP_ARG_INT | MP_ARG_KW_ONLY, {.u_int = RPMSG_ADDR_ANY } }, { MP_QSTR_dest, MP_ARG_INT | MP_ARG_KW_ONLY, {.u_int = RPMSG_ADDR_ANY } }, }; // Parse args. mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)]; mp_arg_parse_all_kw_array(n_args, n_kw, all_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args); endpoint_obj_t *self = mp_obj_malloc_with_finaliser(endpoint_obj_t, &endpoint_type); self->name = args[ARG_name].u_obj; self->callback = args[ARG_callback].u_obj; if (MP_STATE_PORT(virtio_device) == NULL) { openamp_init(); } if (rpmsg_create_ept(&self->ep, &MP_STATE_PORT(virtio_device)->rvdev.rdev, mp_obj_str_get_str(self->name), args[ARG_src].u_int, args[ARG_dest].u_int, endpoint_recv_callback, NULL) != 0) { mp_raise_msg(&mp_type_OSError, MP_ERROR_TEXT("Failed to create RPMsg endpoint")); } return MP_OBJ_FROM_PTR(self); } static const mp_rom_map_elem_t endpoint_locals_dict_table[] = { { MP_ROM_QSTR(MP_QSTR___name__), MP_ROM_QSTR(MP_QSTR_Endpoint) }, { MP_ROM_QSTR(MP_QSTR___del__), MP_ROM_PTR(&endpoint_deinit_obj) }, { MP_ROM_QSTR(MP_QSTR_send), MP_ROM_PTR(&endpoint_send_obj) }, { MP_ROM_QSTR(MP_QSTR_is_ready), MP_ROM_PTR(&endpoint_is_ready_obj) }, }; static MP_DEFINE_CONST_DICT(endpoint_locals_dict, endpoint_locals_dict_table); static MP_DEFINE_CONST_OBJ_TYPE( endpoint_type, MP_QSTR_Endpoint, MP_TYPE_FLAG_NONE, make_new, endpoint_make_new, locals_dict, &endpoint_locals_dict ); // ###################### openamp module ###################### void openamp_remoteproc_notified(mp_sched_node_t *node) { (void)node; rproc_virtio_notified(MP_STATE_PORT(virtio_device)->rvdev.vdev, VRING_NOTIFY_ID); } static void openamp_ns_callback(struct rpmsg_device *rdev, const char *name, uint32_t dest) { metal_log(METAL_LOG_DEBUG, "rpmsg_new_service_callback() new service request name: %s dest %lu\n", name, dest); // The remote processor advertises its presence to the host by sending // the Name Service (NS) announcement containing the name of the channel. virtio_dev_obj_t *virtio_device = metal_container_of(rdev, virtio_dev_obj_t, rvdev); if (virtio_device->ns_callback != mp_const_none) { mp_call_function_2(virtio_device->ns_callback, mp_obj_new_int(dest), mp_obj_new_str(name, strlen(name))); } } #if MICROPY_PY_OPENAMP_RSC_TABLE_ENABLE // The shared resource table must be initialized manually by the host here, // because it's not located in the data region, so the startup code doesn't // know about it. static void openamp_rsc_table_init(openamp_rsc_table_t **rsc_table_out) { openamp_rsc_table_t *rsc_table = METAL_RSC_ADDR; memset(rsc_table, 0, METAL_RSC_SIZE); rsc_table->version = 1; rsc_table->num = MP_ARRAY_SIZE(rsc_table->offset); rsc_table->offset[0] = offsetof(openamp_rsc_table_t, vdev); #if MICROPY_PY_OPENAMP_TRACE_BUF_ENABLE rsc_table->offset[1] = offsetof(openamp_rsc_table_t, trace); #endif rsc_table->vdev = (struct fw_rsc_vdev) { RSC_VDEV, VIRTIO_ID_RPMSG, 0, VIRTIO_DEV_FEATURES, 0, 0, 0, VRING_COUNT, {0, 0} }; rsc_table->vring0 = (struct fw_rsc_vdev_vring) { VRING_TX_ADDR, VRING_ALIGNMENT, VRING_NUM_BUFFS, VRING0_ID, 0 }; rsc_table->vring1 = (struct fw_rsc_vdev_vring) { VRING_RX_ADDR, VRING_ALIGNMENT, VRING_NUM_BUFFS, VRING1_ID, 0 }; #if MICROPY_PY_OPENAMP_TRACE_BUF_ENABLE rsc_table->trace = (struct fw_rsc_trace) { RSC_TRACE, MICROPY_PY_OPENAMP_TRACE_BUF, MICROPY_PY_OPENAMP_TRACE_BUF_LEN, 0, "trace_buf" }; #endif #ifdef VIRTIO_USE_DCACHE // Flush resource table. metal_cache_flush((uint32_t *)rsc_table, sizeof(openamp_rsc_table_t)); #endif *rsc_table_out = rsc_table; } #endif // MICROPY_PY_OPENAMP_RSC_TABLE_ENABLE static mp_obj_t openamp_new_service_callback(mp_obj_t ns_callback) { if (MP_STATE_PORT(virtio_device) == NULL) { openamp_init(); } if (ns_callback != mp_const_none && !mp_obj_is_callable(ns_callback)) { mp_raise_ValueError(MP_ERROR_TEXT("invalid callback")); } MP_STATE_PORT(virtio_device)->ns_callback = ns_callback; return mp_const_none; } static MP_DEFINE_CONST_FUN_OBJ_1(openamp_new_service_callback_obj, openamp_new_service_callback); void openamp_metal_log_handler(enum metal_log_level level, const char *fmt, ...) { va_list args; va_start(args, fmt); mp_vprintf(&mp_plat_print, fmt, args); va_end(args); } void openamp_init(void) { if (MP_STATE_PORT(virtio_device) != NULL) { // Already initialized. return; } struct metal_device *device; struct metal_init_params metal_params = { 0 }; #if METAL_LOG_HANDLER_ENABLE // If logging is enabled, set the default log level and handler before // calling metal_init, to allow ports to override them in metal_sys_init. metal_params.log_level = METAL_LOG_DEBUG; metal_params.log_handler = openamp_metal_log_handler; #endif // Initialize libmetal. metal_init(&metal_params); // Initialize the shared resource table. openamp_rsc_table_t *rsc_table; openamp_rsc_table_init(&rsc_table); if (metal_register_generic_device(&shm_device) != 0) { mp_raise_msg(&mp_type_OSError, MP_ERROR_TEXT("Failed to register metal device")); } if (metal_device_open("generic", METAL_SHM_NAME, &device) != 0) { mp_raise_msg(&mp_type_OSError, MP_ERROR_TEXT("Failed to open metal device")); } // Initialize shared memory IO region. metal_io_init(&device->regions[0], (void *)METAL_SHM_ADDR, (void *)shm_physmap, METAL_SHM_SIZE, -1U, 0, NULL); struct metal_io_region *shm_io = metal_device_io_region(device, 0); if (shm_io == NULL) { mp_raise_msg(&mp_type_OSError, MP_ERROR_TEXT("Failed to initialize device io region")); } // Initialize resource table IO region. metal_io_init(&device->regions[1], (void *)rsc_table, (void *)rsc_table, sizeof(*rsc_table), -1U, 0, NULL); struct metal_io_region *rsc_io = metal_device_io_region(device, 1); if (rsc_io == NULL) { mp_raise_msg(&mp_type_OSError, MP_ERROR_TEXT("Failed to initialize device io region")); } // Create virtio device. struct virtio_device *vdev = rproc_virtio_create_vdev(RPMSG_HOST, VIRTIO_DEV_ID, &rsc_table->vdev, rsc_io, NULL, metal_rproc_notify, NULL); if (vdev == NULL) { mp_raise_msg(&mp_type_OSError, MP_ERROR_TEXT("Failed to create virtio device")); } // Initialize vrings. struct fw_rsc_vdev_vring *vring_rsc = &rsc_table->vring0; for (int i = 0; i < VRING_COUNT; i++, vring_rsc++) { if (rproc_virtio_init_vring(vdev, vring_rsc->notifyid, vring_rsc->notifyid, (void *)vring_rsc->da, shm_io, vring_rsc->num, vring_rsc->align) != 0) { mp_raise_msg(&mp_type_OSError, MP_ERROR_TEXT("Failed to initialize vrings")); } } virtio_dev_obj_t *virtio_device = mp_obj_malloc_with_finaliser(virtio_dev_obj_t, &virtio_dev_type); virtio_device->ns_callback = mp_const_none; // The remote processor detects that the virtio device is ready by polling // the status field in the resource table. rpmsg_virtio_init_shm_pool(&virtio_device->shm_pool, (void *)VRING_BUFF_ADDR, (size_t)VRING_BUFF_SIZE); rpmsg_init_vdev(&virtio_device->rvdev, vdev, openamp_ns_callback, shm_io, &virtio_device->shm_pool); MP_STATE_PORT(virtio_device) = virtio_device; } static const mp_rom_map_elem_t globals_dict_table[] = { { MP_ROM_QSTR(MP_QSTR___name__), MP_ROM_QSTR(MP_QSTR_openamp) }, { MP_ROM_QSTR(MP_QSTR_ENDPOINT_ADDR_ANY), MP_ROM_INT(RPMSG_ADDR_ANY) }, { MP_ROM_QSTR(MP_QSTR_new_service_callback), MP_ROM_PTR(&openamp_new_service_callback_obj) }, { MP_ROM_QSTR(MP_QSTR_Endpoint), MP_ROM_PTR(&endpoint_type) }, #if MICROPY_PY_OPENAMP_REMOTEPROC { MP_ROM_QSTR(MP_QSTR_RemoteProc), MP_ROM_PTR(&openamp_remoteproc_type) }, #endif }; static MP_DEFINE_CONST_DICT(globals_dict, globals_dict_table); const mp_obj_module_t openamp_module = { .base = { &mp_type_module }, .globals = (mp_obj_t)&globals_dict, }; MP_REGISTER_ROOT_POINTER(struct _virtio_dev_obj_t *virtio_device); MP_REGISTER_MODULE(MP_QSTR_openamp, openamp_module); #endif // MICROPY_PY_OPENAMP