/* * This file is part of the MicroPython project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2016 Damien P. George * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include #include #include #include "py/mperrno.h" #include "py/mphal.h" #include "py/runtime.h" #include "extmod/modmachine.h" #define SOFT_I2C_DEFAULT_TIMEOUT_US (50000) // 50ms #if MICROPY_PY_MACHINE_SOFTI2C typedef mp_machine_soft_i2c_obj_t machine_i2c_obj_t; static void mp_hal_i2c_delay(machine_i2c_obj_t *self) { // We need to use an accurate delay to get acceptable I2C // speeds (eg 1us should be not much more than 1us). mp_hal_delay_us_fast(self->us_delay); } static void mp_hal_i2c_scl_low(machine_i2c_obj_t *self) { mp_hal_pin_od_low(self->scl); } static int mp_hal_i2c_scl_release(machine_i2c_obj_t *self) { uint32_t count = self->us_timeout; mp_hal_pin_od_high(self->scl); mp_hal_i2c_delay(self); // For clock stretching, wait for the SCL pin to be released, with timeout. for (; mp_hal_pin_read(self->scl) == 0 && count; --count) { mp_hal_delay_us_fast(1); } if (count == 0) { return -MP_ETIMEDOUT; } return 0; // success } static void mp_hal_i2c_sda_low(machine_i2c_obj_t *self) { mp_hal_pin_od_low(self->sda); } static void mp_hal_i2c_sda_release(machine_i2c_obj_t *self) { mp_hal_pin_od_high(self->sda); } static int mp_hal_i2c_sda_read(machine_i2c_obj_t *self) { return mp_hal_pin_read(self->sda); } static int mp_hal_i2c_start(machine_i2c_obj_t *self) { mp_hal_i2c_sda_release(self); mp_hal_i2c_delay(self); int ret = mp_hal_i2c_scl_release(self); if (ret != 0) { return ret; } mp_hal_i2c_sda_low(self); mp_hal_i2c_delay(self); return 0; // success } static int mp_hal_i2c_stop(machine_i2c_obj_t *self) { mp_hal_i2c_delay(self); mp_hal_i2c_sda_low(self); mp_hal_i2c_delay(self); int ret = mp_hal_i2c_scl_release(self); mp_hal_i2c_sda_release(self); mp_hal_i2c_delay(self); return ret; } static void mp_hal_i2c_init(machine_i2c_obj_t *self, uint32_t freq) { self->us_delay = 500000 / freq; if (self->us_delay == 0) { self->us_delay = 1; } mp_hal_pin_open_drain(self->scl); mp_hal_pin_open_drain(self->sda); mp_hal_i2c_stop(self); // ignore error } // return value: // 0 - byte written and ack received // 1 - byte written and nack received // <0 - error, with errno being the negative of the return value static int mp_hal_i2c_write_byte(machine_i2c_obj_t *self, uint8_t val) { mp_hal_i2c_delay(self); mp_hal_i2c_scl_low(self); for (int i = 7; i >= 0; i--) { if ((val >> i) & 1) { mp_hal_i2c_sda_release(self); } else { mp_hal_i2c_sda_low(self); } mp_hal_i2c_delay(self); int ret = mp_hal_i2c_scl_release(self); if (ret != 0) { mp_hal_i2c_sda_release(self); return ret; } mp_hal_i2c_scl_low(self); } mp_hal_i2c_sda_release(self); mp_hal_i2c_delay(self); int ret = mp_hal_i2c_scl_release(self); if (ret != 0) { return ret; } int ack = mp_hal_i2c_sda_read(self); mp_hal_i2c_delay(self); mp_hal_i2c_scl_low(self); return ack; } // return value: // 0 - success // <0 - error, with errno being the negative of the return value static int mp_hal_i2c_read_byte(machine_i2c_obj_t *self, uint8_t *val, int nack) { mp_hal_i2c_delay(self); mp_hal_i2c_scl_low(self); mp_hal_i2c_delay(self); uint8_t data = 0; for (int i = 7; i >= 0; i--) { int ret = mp_hal_i2c_scl_release(self); if (ret != 0) { return ret; } data = (data << 1) | mp_hal_i2c_sda_read(self); mp_hal_i2c_scl_low(self); mp_hal_i2c_delay(self); } *val = data; // send ack/nack bit if (!nack) { mp_hal_i2c_sda_low(self); } mp_hal_i2c_delay(self); int ret = mp_hal_i2c_scl_release(self); if (ret != 0) { mp_hal_i2c_sda_release(self); return ret; } mp_hal_i2c_scl_low(self); mp_hal_i2c_sda_release(self); return 0; // success } // return value: // >=0 - success; for read it's 0, for write it's number of acks received // <0 - error, with errno being the negative of the return value int mp_machine_soft_i2c_transfer(mp_obj_base_t *self_in, uint16_t addr, size_t n, mp_machine_i2c_buf_t *bufs, unsigned int flags) { machine_i2c_obj_t *self = (machine_i2c_obj_t *)self_in; // start the I2C transaction int ret = mp_hal_i2c_start(self); if (ret != 0) { return ret; } // write the slave address ret = mp_hal_i2c_write_byte(self, (addr << 1) | (flags & MP_MACHINE_I2C_FLAG_READ)); if (ret < 0) { return ret; } else if (ret != 0) { // nack received, release the bus cleanly mp_hal_i2c_stop(self); return -MP_ENODEV; } int transfer_ret = 0; for (; n--; ++bufs) { size_t len = bufs->len; uint8_t *buf = bufs->buf; if (flags & MP_MACHINE_I2C_FLAG_READ) { // read bytes from the slave into the given buffer(s) while (len--) { ret = mp_hal_i2c_read_byte(self, buf++, (n | len) == 0); if (ret != 0) { return ret; } } } else { // write bytes from the given buffer(s) to the slave while (len--) { ret = mp_hal_i2c_write_byte(self, *buf++); if (ret < 0) { return ret; } else if (ret != 0) { // nack received, stop sending n = 0; break; } ++transfer_ret; // count the number of acks } } } // finish the I2C transaction if (flags & MP_MACHINE_I2C_FLAG_STOP) { ret = mp_hal_i2c_stop(self); if (ret != 0) { return ret; } } return transfer_ret; } #endif // MICROPY_PY_MACHINE_SOFTI2C /******************************************************************************/ // Generic helper functions #if MICROPY_PY_MACHINE_I2C || MICROPY_PY_MACHINE_SOFTI2C // For use by ports that require a single buffer of data for a read/write transfer int mp_machine_i2c_transfer_adaptor(mp_obj_base_t *self, uint16_t addr, size_t n, mp_machine_i2c_buf_t *bufs, unsigned int flags) { size_t len; uint8_t *buf; if (n == 1) { // Use given single buffer len = bufs[0].len; buf = bufs[0].buf; } else { // Combine buffers into a single one len = 0; for (size_t i = 0; i < n; ++i) { len += bufs[i].len; } buf = m_new(uint8_t, len); if (!(flags & MP_MACHINE_I2C_FLAG_READ)) { len = 0; for (size_t i = 0; i < n; ++i) { memcpy(buf + len, bufs[i].buf, bufs[i].len); len += bufs[i].len; } } } mp_machine_i2c_p_t *i2c_p = (mp_machine_i2c_p_t *)MP_OBJ_TYPE_GET_SLOT(self->type, protocol); int ret = i2c_p->transfer_single(self, addr, len, buf, flags); if (n > 1) { if (flags & MP_MACHINE_I2C_FLAG_READ) { // Copy data from single buffer to individual ones len = 0; for (size_t i = 0; i < n; ++i) { memcpy(bufs[i].buf, buf + len, bufs[i].len); len += bufs[i].len; } } m_del(uint8_t, buf, len); } return ret; } static int mp_machine_i2c_readfrom(mp_obj_base_t *self, uint16_t addr, uint8_t *dest, size_t len, bool stop) { mp_machine_i2c_p_t *i2c_p = (mp_machine_i2c_p_t *)MP_OBJ_TYPE_GET_SLOT(self->type, protocol); mp_machine_i2c_buf_t buf = {.len = len, .buf = dest}; unsigned int flags = MP_MACHINE_I2C_FLAG_READ | (stop ? MP_MACHINE_I2C_FLAG_STOP : 0); return i2c_p->transfer(self, addr, 1, &buf, flags); } static int mp_machine_i2c_writeto(mp_obj_base_t *self, uint16_t addr, const uint8_t *src, size_t len, bool stop) { mp_machine_i2c_p_t *i2c_p = (mp_machine_i2c_p_t *)MP_OBJ_TYPE_GET_SLOT(self->type, protocol); mp_machine_i2c_buf_t buf = {.len = len, .buf = (uint8_t *)src}; unsigned int flags = stop ? MP_MACHINE_I2C_FLAG_STOP : 0; return i2c_p->transfer(self, addr, 1, &buf, flags); } /******************************************************************************/ // MicroPython bindings for generic machine.I2C static mp_obj_t machine_i2c_init(size_t n_args, const mp_obj_t *args, mp_map_t *kw_args) { mp_obj_base_t *self = (mp_obj_base_t *)MP_OBJ_TO_PTR(args[0]); mp_machine_i2c_p_t *i2c_p = (mp_machine_i2c_p_t *)MP_OBJ_TYPE_GET_SLOT(self->type, protocol); if (i2c_p->init == NULL) { mp_raise_msg(&mp_type_OSError, MP_ERROR_TEXT("I2C operation not supported")); } i2c_p->init(self, n_args - 1, args + 1, kw_args); return mp_const_none; } MP_DEFINE_CONST_FUN_OBJ_KW(machine_i2c_init_obj, 1, machine_i2c_init); static mp_obj_t machine_i2c_scan(mp_obj_t self_in) { mp_obj_base_t *self = MP_OBJ_TO_PTR(self_in); mp_obj_t list = mp_obj_new_list(0, NULL); // 7-bit addresses 0b0000xxx and 0b1111xxx are reserved for (int addr = 0x08; addr < 0x78; ++addr) { int ret = mp_machine_i2c_writeto(self, addr, NULL, 0, true); if (ret == 0) { mp_obj_list_append(list, MP_OBJ_NEW_SMALL_INT(addr)); } // This scan loop may run for some time, so process any pending events/exceptions, // or allow the port to run any necessary background tasks. But do it as fast as // possible, in particular we are not waiting on any events. mp_event_handle_nowait(); } return list; } MP_DEFINE_CONST_FUN_OBJ_1(machine_i2c_scan_obj, machine_i2c_scan); static mp_obj_t machine_i2c_start(mp_obj_t self_in) { mp_obj_base_t *self = (mp_obj_base_t *)MP_OBJ_TO_PTR(self_in); mp_machine_i2c_p_t *i2c_p = (mp_machine_i2c_p_t *)MP_OBJ_TYPE_GET_SLOT(self->type, protocol); if (i2c_p->start == NULL) { mp_raise_msg(&mp_type_OSError, MP_ERROR_TEXT("I2C operation not supported")); } int ret = i2c_p->start(self); if (ret != 0) { mp_raise_OSError(-ret); } return mp_const_none; } MP_DEFINE_CONST_FUN_OBJ_1(machine_i2c_start_obj, machine_i2c_start); static mp_obj_t machine_i2c_stop(mp_obj_t self_in) { mp_obj_base_t *self = (mp_obj_base_t *)MP_OBJ_TO_PTR(self_in); mp_machine_i2c_p_t *i2c_p = (mp_machine_i2c_p_t *)MP_OBJ_TYPE_GET_SLOT(self->type, protocol); if (i2c_p->stop == NULL) { mp_raise_msg(&mp_type_OSError, MP_ERROR_TEXT("I2C operation not supported")); } int ret = i2c_p->stop(self); if (ret != 0) { mp_raise_OSError(-ret); } return mp_const_none; } MP_DEFINE_CONST_FUN_OBJ_1(machine_i2c_stop_obj, machine_i2c_stop); static mp_obj_t machine_i2c_readinto(size_t n_args, const mp_obj_t *args) { mp_obj_base_t *self = (mp_obj_base_t *)MP_OBJ_TO_PTR(args[0]); mp_machine_i2c_p_t *i2c_p = (mp_machine_i2c_p_t *)MP_OBJ_TYPE_GET_SLOT(self->type, protocol); if (i2c_p->read == NULL) { mp_raise_msg(&mp_type_OSError, MP_ERROR_TEXT("I2C operation not supported")); } // get the buffer to read into mp_buffer_info_t bufinfo; mp_get_buffer_raise(args[1], &bufinfo, MP_BUFFER_WRITE); // work out if we want to send a nack at the end bool nack = (n_args == 2) ? true : mp_obj_is_true(args[2]); // do the read int ret = i2c_p->read(self, bufinfo.buf, bufinfo.len, nack); if (ret != 0) { mp_raise_OSError(-ret); } return mp_const_none; } MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(machine_i2c_readinto_obj, 2, 3, machine_i2c_readinto); static mp_obj_t machine_i2c_write(mp_obj_t self_in, mp_obj_t buf_in) { mp_obj_base_t *self = (mp_obj_base_t *)MP_OBJ_TO_PTR(self_in); mp_machine_i2c_p_t *i2c_p = (mp_machine_i2c_p_t *)MP_OBJ_TYPE_GET_SLOT(self->type, protocol); if (i2c_p->write == NULL) { mp_raise_msg(&mp_type_OSError, MP_ERROR_TEXT("I2C operation not supported")); } // get the buffer to write from mp_buffer_info_t bufinfo; mp_get_buffer_raise(buf_in, &bufinfo, MP_BUFFER_READ); // do the write int ret = i2c_p->write(self, bufinfo.buf, bufinfo.len); if (ret < 0) { mp_raise_OSError(-ret); } // return number of acks received return MP_OBJ_NEW_SMALL_INT(ret); } MP_DEFINE_CONST_FUN_OBJ_2(machine_i2c_write_obj, machine_i2c_write); static mp_obj_t machine_i2c_readfrom(size_t n_args, const mp_obj_t *args) { mp_obj_base_t *self = (mp_obj_base_t *)MP_OBJ_TO_PTR(args[0]); mp_int_t addr = mp_obj_get_int(args[1]); vstr_t vstr; vstr_init_len(&vstr, mp_obj_get_int(args[2])); bool stop = (n_args == 3) ? true : mp_obj_is_true(args[3]); int ret = mp_machine_i2c_readfrom(self, addr, (uint8_t *)vstr.buf, vstr.len, stop); if (ret < 0) { mp_raise_OSError(-ret); } return mp_obj_new_bytes_from_vstr(&vstr); } MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(machine_i2c_readfrom_obj, 3, 4, machine_i2c_readfrom); static mp_obj_t machine_i2c_readfrom_into(size_t n_args, const mp_obj_t *args) { mp_obj_base_t *self = (mp_obj_base_t *)MP_OBJ_TO_PTR(args[0]); mp_int_t addr = mp_obj_get_int(args[1]); mp_buffer_info_t bufinfo; mp_get_buffer_raise(args[2], &bufinfo, MP_BUFFER_WRITE); bool stop = (n_args == 3) ? true : mp_obj_is_true(args[3]); int ret = mp_machine_i2c_readfrom(self, addr, bufinfo.buf, bufinfo.len, stop); if (ret < 0) { mp_raise_OSError(-ret); } return mp_const_none; } MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(machine_i2c_readfrom_into_obj, 3, 4, machine_i2c_readfrom_into); static mp_obj_t machine_i2c_writeto(size_t n_args, const mp_obj_t *args) { mp_obj_base_t *self = (mp_obj_base_t *)MP_OBJ_TO_PTR(args[0]); mp_int_t addr = mp_obj_get_int(args[1]); mp_buffer_info_t bufinfo; mp_get_buffer_raise(args[2], &bufinfo, MP_BUFFER_READ); bool stop = (n_args == 3) ? true : mp_obj_is_true(args[3]); int ret = mp_machine_i2c_writeto(self, addr, bufinfo.buf, bufinfo.len, stop); if (ret < 0) { mp_raise_OSError(-ret); } // return number of acks received return MP_OBJ_NEW_SMALL_INT(ret); } static MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(machine_i2c_writeto_obj, 3, 4, machine_i2c_writeto); static mp_obj_t machine_i2c_writevto(size_t n_args, const mp_obj_t *args) { mp_obj_base_t *self = (mp_obj_base_t *)MP_OBJ_TO_PTR(args[0]); mp_int_t addr = mp_obj_get_int(args[1]); // Get the list of data buffer(s) to write size_t nitems; const mp_obj_t *items; mp_obj_get_array(args[2], &nitems, (mp_obj_t **)&items); // Get the stop argument bool stop = (n_args == 3) ? true : mp_obj_is_true(args[3]); // Extract all buffer data, skipping zero-length buffers size_t alloc = nitems == 0 ? 1 : nitems; size_t nbufs = 0; mp_machine_i2c_buf_t *bufs = mp_local_alloc(alloc * sizeof(mp_machine_i2c_buf_t)); for (; nitems--; ++items) { mp_buffer_info_t bufinfo; mp_get_buffer_raise(*items, &bufinfo, MP_BUFFER_READ); if (bufinfo.len > 0) { bufs[nbufs].len = bufinfo.len; bufs[nbufs++].buf = bufinfo.buf; } } // Make sure there is at least one buffer, empty if needed if (nbufs == 0) { bufs[0].len = 0; bufs[0].buf = NULL; nbufs = 1; } // Do the I2C transfer mp_machine_i2c_p_t *i2c_p = (mp_machine_i2c_p_t *)MP_OBJ_TYPE_GET_SLOT(self->type, protocol); int ret = i2c_p->transfer(self, addr, nbufs, bufs, stop ? MP_MACHINE_I2C_FLAG_STOP : 0); mp_local_free(bufs); if (ret < 0) { mp_raise_OSError(-ret); } // Return number of acks received return MP_OBJ_NEW_SMALL_INT(ret); } static MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(machine_i2c_writevto_obj, 3, 4, machine_i2c_writevto); static size_t fill_memaddr_buf(uint8_t *memaddr_buf, uint32_t memaddr, uint8_t addrsize) { size_t memaddr_len = 0; if ((addrsize & 7) != 0 || addrsize > 32) { mp_raise_ValueError(MP_ERROR_TEXT("invalid addrsize")); } for (int16_t i = addrsize - 8; i >= 0; i -= 8) { memaddr_buf[memaddr_len++] = memaddr >> i; } return memaddr_len; } static int read_mem(mp_obj_t self_in, uint16_t addr, uint32_t memaddr, uint8_t addrsize, uint8_t *buf, size_t len) { mp_obj_base_t *self = (mp_obj_base_t *)MP_OBJ_TO_PTR(self_in); // Create buffer with memory address uint8_t memaddr_buf[4]; size_t memaddr_len = fill_memaddr_buf(&memaddr_buf[0], memaddr, addrsize); #if MICROPY_PY_MACHINE_I2C_TRANSFER_WRITE1 // The I2C transfer function may support the MP_MACHINE_I2C_FLAG_WRITE1 option mp_machine_i2c_p_t *i2c_p = (mp_machine_i2c_p_t *)MP_OBJ_TYPE_GET_SLOT(self->type, protocol); if (i2c_p->transfer_supports_write1) { // Create partial write and read buffers mp_machine_i2c_buf_t bufs[2] = { {.len = memaddr_len, .buf = memaddr_buf}, {.len = len, .buf = buf}, }; // Do write+read I2C transfer return i2c_p->transfer(self, addr, 2, bufs, MP_MACHINE_I2C_FLAG_WRITE1 | MP_MACHINE_I2C_FLAG_READ | MP_MACHINE_I2C_FLAG_STOP); } #endif int ret = mp_machine_i2c_writeto(self, addr, memaddr_buf, memaddr_len, false); if (ret != memaddr_len) { // must generate STOP mp_machine_i2c_writeto(self, addr, NULL, 0, true); return ret; } return mp_machine_i2c_readfrom(self, addr, buf, len, true); } static int write_mem(mp_obj_t self_in, uint16_t addr, uint32_t memaddr, uint8_t addrsize, const uint8_t *buf, size_t len) { mp_obj_base_t *self = (mp_obj_base_t *)MP_OBJ_TO_PTR(self_in); // Create buffer with memory address uint8_t memaddr_buf[4]; size_t memaddr_len = fill_memaddr_buf(&memaddr_buf[0], memaddr, addrsize); // Create partial write buffers mp_machine_i2c_buf_t bufs[2] = { {.len = memaddr_len, .buf = memaddr_buf}, {.len = len, .buf = (uint8_t *)buf}, }; // Do I2C transfer mp_machine_i2c_p_t *i2c_p = (mp_machine_i2c_p_t *)MP_OBJ_TYPE_GET_SLOT(self->type, protocol); return i2c_p->transfer(self, addr, 2, bufs, MP_MACHINE_I2C_FLAG_STOP); } static const mp_arg_t machine_i2c_mem_allowed_args[] = { { MP_QSTR_addr, MP_ARG_REQUIRED | MP_ARG_INT, {.u_int = 0} }, { MP_QSTR_memaddr, MP_ARG_REQUIRED | MP_ARG_INT, {.u_int = 0} }, { MP_QSTR_arg, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} }, { MP_QSTR_addrsize, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 8} }, }; static mp_obj_t machine_i2c_readfrom_mem(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) { enum { ARG_addr, ARG_memaddr, ARG_n, ARG_addrsize }; mp_arg_val_t args[MP_ARRAY_SIZE(machine_i2c_mem_allowed_args)]; mp_arg_parse_all(n_args - 1, pos_args + 1, kw_args, MP_ARRAY_SIZE(machine_i2c_mem_allowed_args), machine_i2c_mem_allowed_args, args); // create the buffer to store data into vstr_t vstr; vstr_init_len(&vstr, mp_obj_get_int(args[ARG_n].u_obj)); // do the transfer int ret = read_mem(pos_args[0], args[ARG_addr].u_int, args[ARG_memaddr].u_int, args[ARG_addrsize].u_int, (uint8_t *)vstr.buf, vstr.len); if (ret < 0) { mp_raise_OSError(-ret); } return mp_obj_new_bytes_from_vstr(&vstr); } MP_DEFINE_CONST_FUN_OBJ_KW(machine_i2c_readfrom_mem_obj, 1, machine_i2c_readfrom_mem); static mp_obj_t machine_i2c_readfrom_mem_into(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) { enum { ARG_addr, ARG_memaddr, ARG_buf, ARG_addrsize }; mp_arg_val_t args[MP_ARRAY_SIZE(machine_i2c_mem_allowed_args)]; mp_arg_parse_all(n_args - 1, pos_args + 1, kw_args, MP_ARRAY_SIZE(machine_i2c_mem_allowed_args), machine_i2c_mem_allowed_args, args); // get the buffer to store data into mp_buffer_info_t bufinfo; mp_get_buffer_raise(args[ARG_buf].u_obj, &bufinfo, MP_BUFFER_WRITE); // do the transfer int ret = read_mem(pos_args[0], args[ARG_addr].u_int, args[ARG_memaddr].u_int, args[ARG_addrsize].u_int, bufinfo.buf, bufinfo.len); if (ret < 0) { mp_raise_OSError(-ret); } return mp_const_none; } MP_DEFINE_CONST_FUN_OBJ_KW(machine_i2c_readfrom_mem_into_obj, 1, machine_i2c_readfrom_mem_into); static mp_obj_t machine_i2c_writeto_mem(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) { enum { ARG_addr, ARG_memaddr, ARG_buf, ARG_addrsize }; mp_arg_val_t args[MP_ARRAY_SIZE(machine_i2c_mem_allowed_args)]; mp_arg_parse_all(n_args - 1, pos_args + 1, kw_args, MP_ARRAY_SIZE(machine_i2c_mem_allowed_args), machine_i2c_mem_allowed_args, args); // get the buffer to write the data from mp_buffer_info_t bufinfo; mp_get_buffer_raise(args[ARG_buf].u_obj, &bufinfo, MP_BUFFER_READ); // do the transfer int ret = write_mem(pos_args[0], args[ARG_addr].u_int, args[ARG_memaddr].u_int, args[ARG_addrsize].u_int, bufinfo.buf, bufinfo.len); if (ret < 0) { mp_raise_OSError(-ret); } return mp_const_none; } static MP_DEFINE_CONST_FUN_OBJ_KW(machine_i2c_writeto_mem_obj, 1, machine_i2c_writeto_mem); static const mp_rom_map_elem_t machine_i2c_locals_dict_table[] = { { MP_ROM_QSTR(MP_QSTR_init), MP_ROM_PTR(&machine_i2c_init_obj) }, { MP_ROM_QSTR(MP_QSTR_scan), MP_ROM_PTR(&machine_i2c_scan_obj) }, // primitive I2C operations { MP_ROM_QSTR(MP_QSTR_start), MP_ROM_PTR(&machine_i2c_start_obj) }, { MP_ROM_QSTR(MP_QSTR_stop), MP_ROM_PTR(&machine_i2c_stop_obj) }, { MP_ROM_QSTR(MP_QSTR_readinto), MP_ROM_PTR(&machine_i2c_readinto_obj) }, { MP_ROM_QSTR(MP_QSTR_write), MP_ROM_PTR(&machine_i2c_write_obj) }, // standard bus operations { MP_ROM_QSTR(MP_QSTR_readfrom), MP_ROM_PTR(&machine_i2c_readfrom_obj) }, { MP_ROM_QSTR(MP_QSTR_readfrom_into), MP_ROM_PTR(&machine_i2c_readfrom_into_obj) }, { MP_ROM_QSTR(MP_QSTR_writeto), MP_ROM_PTR(&machine_i2c_writeto_obj) }, { MP_ROM_QSTR(MP_QSTR_writevto), MP_ROM_PTR(&machine_i2c_writevto_obj) }, // memory operations { MP_ROM_QSTR(MP_QSTR_readfrom_mem), MP_ROM_PTR(&machine_i2c_readfrom_mem_obj) }, { MP_ROM_QSTR(MP_QSTR_readfrom_mem_into), MP_ROM_PTR(&machine_i2c_readfrom_mem_into_obj) }, { MP_ROM_QSTR(MP_QSTR_writeto_mem), MP_ROM_PTR(&machine_i2c_writeto_mem_obj) }, }; MP_DEFINE_CONST_DICT(mp_machine_i2c_locals_dict, machine_i2c_locals_dict_table); #endif // MICROPY_PY_MACHINE_I2C || MICROPY_PY_MACHINE_SOFTI2C /******************************************************************************/ // Implementation of soft I2C #if MICROPY_PY_MACHINE_SOFTI2C static void mp_machine_soft_i2c_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) { mp_machine_soft_i2c_obj_t *self = MP_OBJ_TO_PTR(self_in); mp_printf(print, "SoftI2C(scl=" MP_HAL_PIN_FMT ", sda=" MP_HAL_PIN_FMT ", freq=%u)", mp_hal_pin_name(self->scl), mp_hal_pin_name(self->sda), 500000 / self->us_delay); } static void mp_machine_soft_i2c_init(mp_obj_base_t *self_in, size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) { enum { ARG_scl, ARG_sda, ARG_freq, ARG_timeout }; static const mp_arg_t allowed_args[] = { { MP_QSTR_scl, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} }, { MP_QSTR_sda, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} }, { MP_QSTR_freq, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 400000} }, { MP_QSTR_timeout, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = SOFT_I2C_DEFAULT_TIMEOUT_US} }, }; mp_machine_soft_i2c_obj_t *self = (mp_machine_soft_i2c_obj_t *)self_in; mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)]; mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args); self->scl = mp_hal_get_pin_obj(args[ARG_scl].u_obj); self->sda = mp_hal_get_pin_obj(args[ARG_sda].u_obj); self->us_timeout = args[ARG_timeout].u_int; mp_hal_i2c_init(self, args[ARG_freq].u_int); } static mp_obj_t mp_machine_soft_i2c_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *args) { // create new soft I2C object machine_i2c_obj_t *self = mp_obj_malloc(machine_i2c_obj_t, &mp_machine_soft_i2c_type); mp_map_t kw_args; mp_map_init_fixed_table(&kw_args, n_kw, args + n_args); mp_machine_soft_i2c_init(&self->base, n_args, args, &kw_args); return MP_OBJ_FROM_PTR(self); } int mp_machine_soft_i2c_read(mp_obj_base_t *self_in, uint8_t *dest, size_t len, bool nack) { machine_i2c_obj_t *self = (machine_i2c_obj_t *)self_in; while (len--) { int ret = mp_hal_i2c_read_byte(self, dest++, nack && (len == 0)); if (ret != 0) { return ret; } } return 0; // success } int mp_machine_soft_i2c_write(mp_obj_base_t *self_in, const uint8_t *src, size_t len) { machine_i2c_obj_t *self = (machine_i2c_obj_t *)self_in; int num_acks = 0; while (len--) { int ret = mp_hal_i2c_write_byte(self, *src++); if (ret < 0) { return ret; } else if (ret != 0) { // nack received, stop sending break; } ++num_acks; } return num_acks; } static const mp_machine_i2c_p_t mp_machine_soft_i2c_p = { .init = mp_machine_soft_i2c_init, .start = (int (*)(mp_obj_base_t *))mp_hal_i2c_start, .stop = (int (*)(mp_obj_base_t *))mp_hal_i2c_stop, .read = mp_machine_soft_i2c_read, .write = mp_machine_soft_i2c_write, .transfer = mp_machine_soft_i2c_transfer, }; MP_DEFINE_CONST_OBJ_TYPE( mp_machine_soft_i2c_type, MP_QSTR_SoftI2C, MP_TYPE_FLAG_NONE, make_new, mp_machine_soft_i2c_make_new, print, mp_machine_soft_i2c_print, protocol, &mp_machine_soft_i2c_p, locals_dict, &mp_machine_i2c_locals_dict ); #endif // MICROPY_PY_MACHINE_SOFTI2C