stm32: Factor out flash and SPI block-device code to separate files.

Prior to this patch, storage.c was a combination of code that handled
either internal flash or external SPI flash and exposed one of them as a
block device for the local storage.  It was also exposed to the USB MSC.

This patch splits out the flash and SPI code to separate files, which each
provide a general block-device interface (at the C level).  Then storage.c
just picks one of them to use as the local storage medium.  The aim of this
factoring is to allow to add new block devices in the future and allow for
easier configurability.
pull/3609/merge
Damien George 2018-02-13 22:21:46 +11:00
rodzic 34911f1a57
commit fa13e0d35b
5 zmienionych plików z 378 dodań i 298 usunięć

Wyświetl plik

@ -232,6 +232,8 @@ SRC_C = \
rng.c \
rtc.c \
flash.c \
flashbdev.c \
spibdev.c \
storage.c \
sdcard.c \
fatfs_port.c \

Wyświetl plik

@ -0,0 +1,248 @@
/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2013-2018 Damien P. George
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <stdint.h>
#include <string.h>
#include "py/obj.h"
#include "systick.h"
#include "led.h"
#include "flash.h"
#include "storage.h"
#if !defined(MICROPY_HW_SPIFLASH_SIZE_BITS)
// Here we try to automatically configure the location and size of the flash
// pages to use for the internal storage. We also configure the location of the
// cache used for writing.
#if defined(STM32F405xx) || defined(STM32F415xx) || defined(STM32F407xx)
#define CACHE_MEM_START_ADDR (0x10000000) // CCM data RAM, 64k
#define FLASH_SECTOR_SIZE_MAX (0x10000) // 64k max, size of CCM
#define FLASH_MEM_SEG1_START_ADDR (0x08004000) // sector 1
#define FLASH_MEM_SEG1_NUM_BLOCKS (224) // sectors 1,2,3,4: 16k+16k+16k+64k=112k
// enable this to get an extra 64k of storage (uses the last sector of the flash)
#if 0
#define FLASH_MEM_SEG2_START_ADDR (0x080e0000) // sector 11
#define FLASH_MEM_SEG2_NUM_BLOCKS (128) // sector 11: 128k
#endif
#elif defined(STM32F401xE) || defined(STM32F411xE) || defined(STM32F446xx)
STATIC byte flash_cache_mem[0x4000] __attribute__((aligned(4))); // 16k
#define CACHE_MEM_START_ADDR (&flash_cache_mem[0])
#define FLASH_SECTOR_SIZE_MAX (0x4000) // 16k max due to size of cache buffer
#define FLASH_MEM_SEG1_START_ADDR (0x08004000) // sector 1
#define FLASH_MEM_SEG1_NUM_BLOCKS (128) // sectors 1,2,3,4: 16k+16k+16k+16k(of 64k)=64k
#elif defined(STM32F429xx)
#define CACHE_MEM_START_ADDR (0x10000000) // CCM data RAM, 64k
#define FLASH_SECTOR_SIZE_MAX (0x10000) // 64k max, size of CCM
#define FLASH_MEM_SEG1_START_ADDR (0x08004000) // sector 1
#define FLASH_MEM_SEG1_NUM_BLOCKS (224) // sectors 1,2,3,4: 16k+16k+16k+64k=112k
#elif defined(STM32F439xx)
#define CACHE_MEM_START_ADDR (0x10000000) // CCM data RAM, 64k
#define FLASH_SECTOR_SIZE_MAX (0x10000) // 64k max, size of CCM
#define FLASH_MEM_SEG1_START_ADDR (0x08100000) // sector 12
#define FLASH_MEM_SEG1_NUM_BLOCKS (384) // sectors 12,13,14,15,16,17: 16k+16k+16k+16k+64k+64k(of 128k)=192k
#define FLASH_MEM_SEG2_START_ADDR (0x08140000) // sector 18
#define FLASH_MEM_SEG2_NUM_BLOCKS (128) // sector 18: 64k(of 128k)
#elif defined(STM32F746xx) || defined(STM32F767xx) || defined(STM32F769xx)
// The STM32F746 doesn't really have CCRAM, so we use the 64K DTCM for this.
#define CACHE_MEM_START_ADDR (0x20000000) // DTCM data RAM, 64k
#define FLASH_SECTOR_SIZE_MAX (0x08000) // 32k max
#define FLASH_MEM_SEG1_START_ADDR (0x08008000) // sector 1
#define FLASH_MEM_SEG1_NUM_BLOCKS (192) // sectors 1,2,3: 32k+32k+32=96k
#elif defined(STM32L475xx) || defined(STM32L476xx)
extern uint8_t _flash_fs_start;
extern uint8_t _flash_fs_end;
// The STM32L475/6 doesn't have CCRAM, so we use the 32K SRAM2 for this.
#define CACHE_MEM_START_ADDR (0x10000000) // SRAM2 data RAM, 32k
#define FLASH_SECTOR_SIZE_MAX (0x00800) // 2k max
#define FLASH_MEM_SEG1_START_ADDR ((long)&_flash_fs_start)
#define FLASH_MEM_SEG1_NUM_BLOCKS ((&_flash_fs_end - &_flash_fs_start) / 512)
#else
#error "no internal flash storage support for this MCU"
#endif
#if !defined(FLASH_MEM_SEG2_START_ADDR)
#define FLASH_MEM_SEG2_START_ADDR (0) // no second segment
#define FLASH_MEM_SEG2_NUM_BLOCKS (0) // no second segment
#endif
#define FLASH_FLAG_DIRTY (1)
#define FLASH_FLAG_FORCE_WRITE (2)
#define FLASH_FLAG_ERASED (4)
static __IO uint8_t flash_flags = 0;
static uint32_t flash_cache_sector_id;
static uint32_t flash_cache_sector_start;
static uint32_t flash_cache_sector_size;
static uint32_t flash_tick_counter_last_write;
void flash_bdev_init(void) {
flash_flags = 0;
flash_cache_sector_id = 0;
flash_tick_counter_last_write = 0;
}
uint32_t flash_bdev_num_blocks(void) {
return FLASH_MEM_SEG1_NUM_BLOCKS + FLASH_MEM_SEG2_NUM_BLOCKS;
}
void flash_bdev_flush(void) {
if (flash_flags & FLASH_FLAG_DIRTY) {
flash_flags |= FLASH_FLAG_FORCE_WRITE;
while (flash_flags & FLASH_FLAG_DIRTY) {
NVIC->STIR = FLASH_IRQn;
}
}
}
static uint8_t *flash_cache_get_addr_for_write(uint32_t flash_addr) {
uint32_t flash_sector_start;
uint32_t flash_sector_size;
uint32_t flash_sector_id = flash_get_sector_info(flash_addr, &flash_sector_start, &flash_sector_size);
if (flash_sector_size > FLASH_SECTOR_SIZE_MAX) {
flash_sector_size = FLASH_SECTOR_SIZE_MAX;
}
if (flash_cache_sector_id != flash_sector_id) {
flash_bdev_flush();
memcpy((void*)CACHE_MEM_START_ADDR, (const void*)flash_sector_start, flash_sector_size);
flash_cache_sector_id = flash_sector_id;
flash_cache_sector_start = flash_sector_start;
flash_cache_sector_size = flash_sector_size;
}
flash_flags |= FLASH_FLAG_DIRTY;
led_state(PYB_LED_RED, 1); // indicate a dirty cache with LED on
flash_tick_counter_last_write = HAL_GetTick();
return (uint8_t*)CACHE_MEM_START_ADDR + flash_addr - flash_sector_start;
}
static uint8_t *flash_cache_get_addr_for_read(uint32_t flash_addr) {
uint32_t flash_sector_start;
uint32_t flash_sector_size;
uint32_t flash_sector_id = flash_get_sector_info(flash_addr, &flash_sector_start, &flash_sector_size);
if (flash_cache_sector_id == flash_sector_id) {
// in cache, copy from there
return (uint8_t*)CACHE_MEM_START_ADDR + flash_addr - flash_sector_start;
}
// not in cache, copy straight from flash
return (uint8_t*)flash_addr;
}
static uint32_t convert_block_to_flash_addr(uint32_t block) {
if (block < FLASH_MEM_SEG1_NUM_BLOCKS) {
return FLASH_MEM_SEG1_START_ADDR + block * FLASH_BLOCK_SIZE;
}
if (block < FLASH_MEM_SEG1_NUM_BLOCKS + FLASH_MEM_SEG2_NUM_BLOCKS) {
return FLASH_MEM_SEG2_START_ADDR + (block - FLASH_MEM_SEG1_NUM_BLOCKS) * FLASH_BLOCK_SIZE;
}
// can add more flash segments here if needed, following above pattern
// bad block
return -1;
}
void flash_bdev_irq_handler(void) {
if (!(flash_flags & FLASH_FLAG_DIRTY)) {
return;
}
// This code uses interrupts to erase the flash
/*
if (flash_erase_state == 0) {
flash_erase_it(flash_cache_sector_start, (const uint32_t*)CACHE_MEM_START_ADDR, flash_cache_sector_size / 4);
flash_erase_state = 1;
return;
}
if (flash_erase_state == 1) {
// wait for erase
// TODO add timeout
#define flash_erase_done() (__HAL_FLASH_GET_FLAG(FLASH_FLAG_BSY) == RESET)
if (!flash_erase_done()) {
return;
}
flash_erase_state = 2;
}
*/
// This code erases the flash directly, waiting for it to finish
if (!(flash_flags & FLASH_FLAG_ERASED)) {
flash_erase(flash_cache_sector_start, (const uint32_t*)CACHE_MEM_START_ADDR, flash_cache_sector_size / 4);
flash_flags |= FLASH_FLAG_ERASED;
return;
}
// If not a forced write, wait at least 5 seconds after last write to flush
// On file close and flash unmount we get a forced write, so we can afford to wait a while
if ((flash_flags & FLASH_FLAG_FORCE_WRITE) || sys_tick_has_passed(flash_tick_counter_last_write, 5000)) {
// sync the cache RAM buffer by writing it to the flash page
flash_write(flash_cache_sector_start, (const uint32_t*)CACHE_MEM_START_ADDR, flash_cache_sector_size / 4);
// clear the flash flags now that we have a clean cache
flash_flags = 0;
// indicate a clean cache with LED off
led_state(PYB_LED_RED, 0);
}
}
bool flash_bdev_readblock(uint8_t *dest, uint32_t block) {
// non-MBR block, get data from flash memory, possibly via cache
uint32_t flash_addr = convert_block_to_flash_addr(block);
if (flash_addr == -1) {
// bad block number
return false;
}
uint8_t *src = flash_cache_get_addr_for_read(flash_addr);
memcpy(dest, src, FLASH_BLOCK_SIZE);
return true;
}
bool flash_bdev_writeblock(const uint8_t *src, uint32_t block) {
// non-MBR block, copy to cache
uint32_t flash_addr = convert_block_to_flash_addr(block);
if (flash_addr == -1) {
// bad block number
return false;
}
uint8_t *dest = flash_cache_get_addr_for_write(flash_addr);
memcpy(dest, src, FLASH_BLOCK_SIZE);
return true;
}
#endif // !defined(MICROPY_HW_SPIFLASH_SIZE_BITS)

Wyświetl plik

@ -0,0 +1,78 @@
/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2017-2018 Damien P. George
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "py/obj.h"
#include "storage.h"
#if defined(MICROPY_HW_SPIFLASH_SIZE_BITS)
#include "drivers/memory/spiflash.h"
#include "genhdr/pins.h"
STATIC const mp_machine_soft_spi_obj_t spiflash_spi_bus = {
.base = {&mp_machine_soft_spi_type},
.delay_half = MICROPY_PY_MACHINE_SPI_MIN_DELAY,
.polarity = 0,
.phase = 0,
.sck = &MICROPY_HW_SPIFLASH_SCK,
.mosi = &MICROPY_HW_SPIFLASH_MOSI,
.miso = &MICROPY_HW_SPIFLASH_MISO,
};
STATIC const mp_spiflash_t spiflash = {
.cs = &MICROPY_HW_SPIFLASH_CS,
.spi = (mp_obj_base_t*)&spiflash_spi_bus.base,
};
void spi_bdev_init(void) {
mp_spiflash_init((mp_spiflash_t*)&spiflash);
}
bool spi_bdev_readblock(uint8_t *dest, uint32_t block) {
// we must disable USB irqs to prevent MSC contention with SPI flash
uint32_t basepri = raise_irq_pri(IRQ_PRI_OTG_FS);
mp_spiflash_read((mp_spiflash_t*)&spiflash,
block * FLASH_BLOCK_SIZE, FLASH_BLOCK_SIZE, dest);
restore_irq_pri(basepri);
return true;
}
bool spi_bdev_writeblock(const uint8_t *src, uint32_t block) {
// we must disable USB irqs to prevent MSC contention with SPI flash
uint32_t basepri = raise_irq_pri(IRQ_PRI_OTG_FS);
int ret = mp_spiflash_write((mp_spiflash_t*)&spiflash,
block * FLASH_BLOCK_SIZE, FLASH_BLOCK_SIZE, src);
restore_irq_pri(basepri);
return ret == 0;
}
#endif // defined(MICROPY_HW_SPIFLASH_SIZE_BITS)

Wyświetl plik

@ -3,7 +3,7 @@
*
* The MIT License (MIT)
*
* Copyright (c) 2013, 2014 Damien P. George
* Copyright (c) 2013-2018 Damien P. George
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
@ -27,191 +27,51 @@
#include <stdint.h>
#include <string.h>
#include "py/obj.h"
#include "py/runtime.h"
#include "lib/oofatfs/ff.h"
#include "extmod/vfs_fat.h"
#include "systick.h"
#include "led.h"
#include "flash.h"
#include "storage.h"
#include "irq.h"
#if defined(MICROPY_HW_SPIFLASH_SIZE_BITS)
#define USE_INTERNAL (0)
#else
#define USE_INTERNAL (1)
#endif
#if USE_INTERNAL
#if defined(STM32F405xx) || defined(STM32F415xx) || defined(STM32F407xx)
#define CACHE_MEM_START_ADDR (0x10000000) // CCM data RAM, 64k
#define FLASH_SECTOR_SIZE_MAX (0x10000) // 64k max, size of CCM
#define FLASH_MEM_SEG1_START_ADDR (0x08004000) // sector 1
#define FLASH_MEM_SEG1_NUM_BLOCKS (224) // sectors 1,2,3,4: 16k+16k+16k+64k=112k
// enable this to get an extra 64k of storage (uses the last sector of the flash)
#if 0
#define FLASH_MEM_SEG2_START_ADDR (0x080e0000) // sector 11
#define FLASH_MEM_SEG2_NUM_BLOCKS (128) // sector 11: 128k
#endif
#elif defined(STM32F401xE) || defined(STM32F411xE) || defined(STM32F446xx)
STATIC byte flash_cache_mem[0x4000] __attribute__((aligned(4))); // 16k
#define CACHE_MEM_START_ADDR (&flash_cache_mem[0])
#define FLASH_SECTOR_SIZE_MAX (0x4000) // 16k max due to size of cache buffer
#define FLASH_MEM_SEG1_START_ADDR (0x08004000) // sector 1
#define FLASH_MEM_SEG1_NUM_BLOCKS (128) // sectors 1,2,3,4: 16k+16k+16k+16k(of 64k)=64k
#elif defined(STM32F429xx)
#define CACHE_MEM_START_ADDR (0x10000000) // CCM data RAM, 64k
#define FLASH_SECTOR_SIZE_MAX (0x10000) // 64k max, size of CCM
#define FLASH_MEM_SEG1_START_ADDR (0x08004000) // sector 1
#define FLASH_MEM_SEG1_NUM_BLOCKS (224) // sectors 1,2,3,4: 16k+16k+16k+64k=112k
#elif defined(STM32F439xx)
#define CACHE_MEM_START_ADDR (0x10000000) // CCM data RAM, 64k
#define FLASH_SECTOR_SIZE_MAX (0x10000) // 64k max, size of CCM
#define FLASH_MEM_SEG1_START_ADDR (0x08100000) // sector 12
#define FLASH_MEM_SEG1_NUM_BLOCKS (384) // sectors 12,13,14,15,16,17: 16k+16k+16k+16k+64k+64k(of 128k)=192k
#define FLASH_MEM_SEG2_START_ADDR (0x08140000) // sector 18
#define FLASH_MEM_SEG2_NUM_BLOCKS (128) // sector 18: 64k(of 128k)
#elif defined(STM32F746xx) || defined(STM32F767xx) || defined(STM32F769xx)
// The STM32F746 doesn't really have CCRAM, so we use the 64K DTCM for this.
#define CACHE_MEM_START_ADDR (0x20000000) // DTCM data RAM, 64k
#define FLASH_SECTOR_SIZE_MAX (0x08000) // 32k max
#define FLASH_MEM_SEG1_START_ADDR (0x08008000) // sector 1
#define FLASH_MEM_SEG1_NUM_BLOCKS (192) // sectors 1,2,3: 32k+32k+32=96k
#elif defined(STM32L475xx) || defined(STM32L476xx)
extern uint8_t _flash_fs_start;
extern uint8_t _flash_fs_end;
// The STM32L475/6 doesn't have CCRAM, so we use the 32K SRAM2 for this.
#define CACHE_MEM_START_ADDR (0x10000000) // SRAM2 data RAM, 32k
#define FLASH_SECTOR_SIZE_MAX (0x00800) // 2k max
#define FLASH_MEM_SEG1_START_ADDR ((long)&_flash_fs_start)
#define FLASH_MEM_SEG1_NUM_BLOCKS ((&_flash_fs_end - &_flash_fs_start) / 512)
// Use external SPI flash as the storage medium
#define BDEV_NUM_BLOCKS (MICROPY_HW_SPIFLASH_SIZE_BITS / 8 / FLASH_BLOCK_SIZE)
#define BDEV_INIT spi_bdev_init
#define BDEV_READBLOCK spi_bdev_readblock
#define BDEV_WRITEBLOCK spi_bdev_writeblock
#else
#error "no storage support for this MCU"
#endif
#if !defined(FLASH_MEM_SEG2_START_ADDR)
#define FLASH_MEM_SEG2_START_ADDR (0) // no second segment
#define FLASH_MEM_SEG2_NUM_BLOCKS (0) // no second segment
// Use internal flash as the storage medium
#define BDEV_NUM_BLOCKS flash_bdev_num_blocks()
#define BDEV_INIT flash_bdev_init
#define BDEV_IRQ_HANDLER flash_bdev_irq_handler
#define BDEV_FLUSH flash_bdev_flush
#define BDEV_READBLOCK flash_bdev_readblock
#define BDEV_WRITEBLOCK flash_bdev_writeblock
#endif
#define FLASH_PART1_START_BLOCK (0x100)
#define FLASH_PART1_NUM_BLOCKS (FLASH_MEM_SEG1_NUM_BLOCKS + FLASH_MEM_SEG2_NUM_BLOCKS)
#define FLASH_FLAG_DIRTY (1)
#define FLASH_FLAG_FORCE_WRITE (2)
#define FLASH_FLAG_ERASED (4)
static bool flash_is_initialised = false;
static __IO uint8_t flash_flags = 0;
static uint32_t flash_cache_sector_id;
static uint32_t flash_cache_sector_start;
static uint32_t flash_cache_sector_size;
static uint32_t flash_tick_counter_last_write;
static void flash_cache_flush(void) {
if (flash_flags & FLASH_FLAG_DIRTY) {
flash_flags |= FLASH_FLAG_FORCE_WRITE;
while (flash_flags & FLASH_FLAG_DIRTY) {
NVIC->STIR = FLASH_IRQn;
}
}
}
static uint8_t *flash_cache_get_addr_for_write(uint32_t flash_addr) {
uint32_t flash_sector_start;
uint32_t flash_sector_size;
uint32_t flash_sector_id = flash_get_sector_info(flash_addr, &flash_sector_start, &flash_sector_size);
if (flash_sector_size > FLASH_SECTOR_SIZE_MAX) {
flash_sector_size = FLASH_SECTOR_SIZE_MAX;
}
if (flash_cache_sector_id != flash_sector_id) {
flash_cache_flush();
memcpy((void*)CACHE_MEM_START_ADDR, (const void*)flash_sector_start, flash_sector_size);
flash_cache_sector_id = flash_sector_id;
flash_cache_sector_start = flash_sector_start;
flash_cache_sector_size = flash_sector_size;
}
flash_flags |= FLASH_FLAG_DIRTY;
led_state(PYB_LED_RED, 1); // indicate a dirty cache with LED on
flash_tick_counter_last_write = HAL_GetTick();
return (uint8_t*)CACHE_MEM_START_ADDR + flash_addr - flash_sector_start;
}
static uint8_t *flash_cache_get_addr_for_read(uint32_t flash_addr) {
uint32_t flash_sector_start;
uint32_t flash_sector_size;
uint32_t flash_sector_id = flash_get_sector_info(flash_addr, &flash_sector_start, &flash_sector_size);
if (flash_cache_sector_id == flash_sector_id) {
// in cache, copy from there
return (uint8_t*)CACHE_MEM_START_ADDR + flash_addr - flash_sector_start;
}
// not in cache, copy straight from flash
return (uint8_t*)flash_addr;
}
#else
#include "drivers/memory/spiflash.h"
#include "genhdr/pins.h"
#define FLASH_PART1_START_BLOCK (0x100)
#define FLASH_PART1_NUM_BLOCKS (MICROPY_HW_SPIFLASH_SIZE_BITS / 8 / FLASH_BLOCK_SIZE)
static bool flash_is_initialised = false;
STATIC const mp_machine_soft_spi_obj_t spiflash_spi_bus = {
.base = {&mp_machine_soft_spi_type},
.delay_half = MICROPY_PY_MACHINE_SPI_MIN_DELAY,
.polarity = 0,
.phase = 0,
.sck = &MICROPY_HW_SPIFLASH_SCK,
.mosi = &MICROPY_HW_SPIFLASH_MOSI,
.miso = &MICROPY_HW_SPIFLASH_MISO,
};
STATIC const mp_spiflash_t spiflash = {
.cs = &MICROPY_HW_SPIFLASH_CS,
.spi = (mp_obj_base_t*)&spiflash_spi_bus.base,
};
#endif
static bool storage_is_initialised = false;
void storage_init(void) {
if (!flash_is_initialised) {
#if USE_INTERNAL
flash_flags = 0;
flash_cache_sector_id = 0;
flash_tick_counter_last_write = 0;
#else
mp_spiflash_init((mp_spiflash_t*)&spiflash);
#endif
flash_is_initialised = true;
}
if (!storage_is_initialised) {
storage_is_initialised = true;
#if USE_INTERNAL
// Enable the flash IRQ, which is used to also call our storage IRQ handler
// It needs to go at a higher priority than all those components that rely on
// the flash storage (eg higher than USB MSC).
HAL_NVIC_SetPriority(FLASH_IRQn, IRQ_PRI_FLASH, IRQ_SUBPRI_FLASH);
HAL_NVIC_EnableIRQ(FLASH_IRQn);
#endif
BDEV_INIT();
#if defined(BDEV_IRQ_HANDLER)
// Enable the flash IRQ, which is used to also call our storage IRQ handler
// It needs to go at a higher priority than all those components that rely on
// the flash storage (eg higher than USB MSC).
HAL_NVIC_SetPriority(FLASH_IRQn, IRQ_PRI_FLASH, IRQ_SUBPRI_FLASH);
HAL_NVIC_EnableIRQ(FLASH_IRQn);
#endif
}
}
uint32_t storage_get_block_size(void) {
@ -219,59 +79,18 @@ uint32_t storage_get_block_size(void) {
}
uint32_t storage_get_block_count(void) {
return FLASH_PART1_START_BLOCK + FLASH_PART1_NUM_BLOCKS;
return FLASH_PART1_START_BLOCK + BDEV_NUM_BLOCKS;
}
void storage_irq_handler(void) {
#if USE_INTERNAL
if (!(flash_flags & FLASH_FLAG_DIRTY)) {
return;
}
// This code uses interrupts to erase the flash
/*
if (flash_erase_state == 0) {
flash_erase_it(flash_cache_sector_start, (const uint32_t*)CACHE_MEM_START_ADDR, flash_cache_sector_size / 4);
flash_erase_state = 1;
return;
}
if (flash_erase_state == 1) {
// wait for erase
// TODO add timeout
#define flash_erase_done() (__HAL_FLASH_GET_FLAG(FLASH_FLAG_BSY) == RESET)
if (!flash_erase_done()) {
return;
}
flash_erase_state = 2;
}
*/
// This code erases the flash directly, waiting for it to finish
if (!(flash_flags & FLASH_FLAG_ERASED)) {
flash_erase(flash_cache_sector_start, (const uint32_t*)CACHE_MEM_START_ADDR, flash_cache_sector_size / 4);
flash_flags |= FLASH_FLAG_ERASED;
return;
}
// If not a forced write, wait at least 5 seconds after last write to flush
// On file close and flash unmount we get a forced write, so we can afford to wait a while
if ((flash_flags & FLASH_FLAG_FORCE_WRITE) || sys_tick_has_passed(flash_tick_counter_last_write, 5000)) {
// sync the cache RAM buffer by writing it to the flash page
flash_write(flash_cache_sector_start, (const uint32_t*)CACHE_MEM_START_ADDR, flash_cache_sector_size / 4);
// clear the flash flags now that we have a clean cache
flash_flags = 0;
// indicate a clean cache with LED off
led_state(PYB_LED_RED, 0);
}
#if defined(BDEV_IRQ_HANDLER)
BDEV_IRQ_HANDLER();
#endif
}
void storage_flush(void) {
#if USE_INTERNAL
flash_cache_flush();
#if defined(BDEV_FLUSH)
BDEV_FLUSH();
#endif
}
@ -311,25 +130,6 @@ static void build_partition(uint8_t *buf, int boot, int type, uint32_t start_blo
buf[15] = num_blocks >> 24;
}
#if USE_INTERNAL
static uint32_t convert_block_to_flash_addr(uint32_t block) {
if (FLASH_PART1_START_BLOCK <= block && block < FLASH_PART1_START_BLOCK + FLASH_PART1_NUM_BLOCKS) {
// a block in partition 1
block -= FLASH_PART1_START_BLOCK;
if (block < FLASH_MEM_SEG1_NUM_BLOCKS) {
return FLASH_MEM_SEG1_START_ADDR + block * FLASH_BLOCK_SIZE;
} else if (block < FLASH_MEM_SEG1_NUM_BLOCKS + FLASH_MEM_SEG2_NUM_BLOCKS) {
return FLASH_MEM_SEG2_START_ADDR + (block - FLASH_MEM_SEG1_NUM_BLOCKS) * FLASH_BLOCK_SIZE;
}
// can add more flash segments here if needed, following above pattern
}
// bad block
return -1;
}
#endif
bool storage_read_block(uint8_t *dest, uint32_t block) {
//printf("RD %u\n", block);
if (block == 0) {
@ -339,7 +139,7 @@ bool storage_read_block(uint8_t *dest, uint32_t block) {
dest[i] = 0;
}
build_partition(dest + 446, 0, 0x01 /* FAT12 */, FLASH_PART1_START_BLOCK, FLASH_PART1_NUM_BLOCKS);
build_partition(dest + 446, 0, 0x01 /* FAT12 */, FLASH_PART1_START_BLOCK, BDEV_NUM_BLOCKS);
build_partition(dest + 462, 0, 0, 0, 0);
build_partition(dest + 478, 0, 0, 0, 0);
build_partition(dest + 494, 0, 0, 0, 0);
@ -349,39 +149,10 @@ bool storage_read_block(uint8_t *dest, uint32_t block) {
return true;
} else if (FLASH_PART1_START_BLOCK <= block && block < FLASH_PART1_START_BLOCK + BDEV_NUM_BLOCKS) {
return BDEV_READBLOCK(dest, block - FLASH_PART1_START_BLOCK);
} else {
#if USE_INTERNAL
// non-MBR block, get data from flash memory, possibly via cache
uint32_t flash_addr = convert_block_to_flash_addr(block);
if (flash_addr == -1) {
// bad block number
return false;
}
uint8_t *src = flash_cache_get_addr_for_read(flash_addr);
memcpy(dest, src, FLASH_BLOCK_SIZE);
return true;
#else
// non-MBR block, get data from SPI flash
if (block < FLASH_PART1_START_BLOCK || block >= FLASH_PART1_START_BLOCK + FLASH_PART1_NUM_BLOCKS) {
// bad block number
return false;
}
// we must disable USB irqs to prevent MSC contention with SPI flash
uint32_t basepri = raise_irq_pri(IRQ_PRI_OTG_FS);
mp_spiflash_read((mp_spiflash_t*)&spiflash,
(block - FLASH_PART1_START_BLOCK) * FLASH_BLOCK_SIZE, FLASH_BLOCK_SIZE, dest);
restore_irq_pri(basepri);
return true;
#endif
return false;
}
}
@ -390,40 +161,10 @@ bool storage_write_block(const uint8_t *src, uint32_t block) {
if (block == 0) {
// can't write MBR, but pretend we did
return true;
} else if (FLASH_PART1_START_BLOCK <= block && block < FLASH_PART1_START_BLOCK + BDEV_NUM_BLOCKS) {
return BDEV_WRITEBLOCK(src, block - FLASH_PART1_START_BLOCK);
} else {
#if USE_INTERNAL
// non-MBR block, copy to cache
uint32_t flash_addr = convert_block_to_flash_addr(block);
if (flash_addr == -1) {
// bad block number
return false;
}
uint8_t *dest = flash_cache_get_addr_for_write(flash_addr);
memcpy(dest, src, FLASH_BLOCK_SIZE);
return true;
#else
// non-MBR block, write to SPI flash
if (block < FLASH_PART1_START_BLOCK || block >= FLASH_PART1_START_BLOCK + FLASH_PART1_NUM_BLOCKS) {
// bad block number
return false;
}
// we must disable USB irqs to prevent MSC contention with SPI flash
uint32_t basepri = raise_irq_pri(IRQ_PRI_OTG_FS);
int ret = mp_spiflash_write((mp_spiflash_t*)&spiflash,
(block - FLASH_PART1_START_BLOCK) * FLASH_BLOCK_SIZE, FLASH_BLOCK_SIZE, src);
restore_irq_pri(basepri);
return ret == 0;
#endif
return false;
}
}

Wyświetl plik

@ -43,6 +43,17 @@ bool storage_write_block(const uint8_t *src, uint32_t block);
mp_uint_t storage_read_blocks(uint8_t *dest, uint32_t block_num, uint32_t num_blocks);
mp_uint_t storage_write_blocks(const uint8_t *src, uint32_t block_num, uint32_t num_blocks);
uint32_t flash_bdev_num_blocks(void);
void flash_bdev_init(void);
void flash_bdev_irq_handler(void);
void flash_bdev_flush(void);
bool flash_bdev_readblock(uint8_t *dest, uint32_t block);
bool flash_bdev_writeblock(const uint8_t *src, uint32_t block);
void spi_bdev_init(void);
bool spi_bdev_readblock(uint8_t *dest, uint32_t block);
bool spi_bdev_writeblock(const uint8_t *src, uint32_t block);
extern const struct _mp_obj_type_t pyb_flash_type;
struct _fs_user_mount_t;