stm32/spi: Split out pyb.SPI and machine.SPI bindings to their own files

The aim here is to have spi.c contain the low-level SPI driver which is
independent (not fully but close) of MicroPython objects and methods, and
the higher-level bindings are separated out to pyb_spi.c and machine_spi.c.
pull/3987/merge
Damien George 2018-08-14 17:11:07 +10:00
rodzic 48d736f491
commit 8300be6d0f
5 zmienionych plików z 528 dodań i 472 usunięć

Wyświetl plik

@ -229,6 +229,7 @@ SRC_C = \
i2c.c \
pyb_i2c.c \
spi.c \
pyb_spi.c \
qspi.c \
uart.c \
can.c \
@ -237,6 +238,7 @@ SRC_C = \
gccollect.c \
help.c \
machine_i2c.c \
machine_spi.c \
modmachine.c \
modpyb.c \
modstm.c \

Wyświetl plik

@ -0,0 +1,143 @@
/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2013-2018 Damien P. George
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "py/runtime.h"
#include "extmod/machine_spi.h"
#include "spi.h"
/******************************************************************************/
// Implementation of hard SPI for machine module
STATIC const machine_hard_spi_obj_t machine_hard_spi_obj[] = {
{{&machine_hard_spi_type}, &spi_obj[0]},
{{&machine_hard_spi_type}, &spi_obj[1]},
{{&machine_hard_spi_type}, &spi_obj[2]},
{{&machine_hard_spi_type}, &spi_obj[3]},
{{&machine_hard_spi_type}, &spi_obj[4]},
{{&machine_hard_spi_type}, &spi_obj[5]},
};
STATIC void machine_hard_spi_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) {
machine_hard_spi_obj_t *self = MP_OBJ_TO_PTR(self_in);
spi_print(print, self->spi, false);
}
mp_obj_t machine_hard_spi_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *all_args) {
enum { ARG_id, ARG_baudrate, ARG_polarity, ARG_phase, ARG_bits, ARG_firstbit, ARG_sck, ARG_mosi, ARG_miso };
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_id, MP_ARG_OBJ, {.u_obj = MP_OBJ_NEW_SMALL_INT(-1)} },
{ MP_QSTR_baudrate, MP_ARG_INT, {.u_int = 500000} },
{ MP_QSTR_polarity, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0} },
{ MP_QSTR_phase, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0} },
{ MP_QSTR_bits, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 8} },
{ MP_QSTR_firstbit, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = SPI_FIRSTBIT_MSB} },
{ MP_QSTR_sck, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} },
{ MP_QSTR_mosi, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} },
{ MP_QSTR_miso, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} },
};
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all_kw_array(n_args, n_kw, all_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
// get static peripheral object
int spi_id = spi_find_index(args[ARG_id].u_obj);
const machine_hard_spi_obj_t *self = &machine_hard_spi_obj[spi_id - 1];
// here we would check the sck/mosi/miso pins and configure them, but it's not implemented
if (args[ARG_sck].u_obj != MP_OBJ_NULL
|| args[ARG_mosi].u_obj != MP_OBJ_NULL
|| args[ARG_miso].u_obj != MP_OBJ_NULL) {
mp_raise_ValueError("explicit choice of sck/mosi/miso is not implemented");
}
// set the SPI configuration values
SPI_InitTypeDef *init = &self->spi->spi->Init;
init->Mode = SPI_MODE_MASTER;
// these parameters are not currently configurable
init->Direction = SPI_DIRECTION_2LINES;
init->NSS = SPI_NSS_SOFT;
init->TIMode = SPI_TIMODE_DISABLE;
init->CRCCalculation = SPI_CRCCALCULATION_DISABLE;
init->CRCPolynomial = 0;
// set configurable paramaters
spi_set_params(self->spi, 0xffffffff, args[ARG_baudrate].u_int,
args[ARG_polarity].u_int, args[ARG_phase].u_int, args[ARG_bits].u_int,
args[ARG_firstbit].u_int);
// init the SPI bus
spi_init(self->spi, false);
return MP_OBJ_FROM_PTR(self);
}
STATIC void machine_hard_spi_init(mp_obj_base_t *self_in, size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
machine_hard_spi_obj_t *self = (machine_hard_spi_obj_t*)self_in;
enum { ARG_baudrate, ARG_polarity, ARG_phase, ARG_bits, ARG_firstbit };
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_baudrate, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = -1} },
{ MP_QSTR_polarity, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = -1} },
{ MP_QSTR_phase, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = -1} },
{ MP_QSTR_bits, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = -1} },
{ MP_QSTR_firstbit, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = -1} },
};
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
// set the SPI configuration values
spi_set_params(self->spi, 0xffffffff, args[ARG_baudrate].u_int,
args[ARG_polarity].u_int, args[ARG_phase].u_int, args[ARG_bits].u_int,
args[ARG_firstbit].u_int);
// re-init the SPI bus
spi_init(self->spi, false);
}
STATIC void machine_hard_spi_deinit(mp_obj_base_t *self_in) {
machine_hard_spi_obj_t *self = (machine_hard_spi_obj_t*)self_in;
spi_deinit(self->spi);
}
STATIC void machine_hard_spi_transfer(mp_obj_base_t *self_in, size_t len, const uint8_t *src, uint8_t *dest) {
machine_hard_spi_obj_t *self = (machine_hard_spi_obj_t*)self_in;
spi_transfer(self->spi, len, src, dest, SPI_TRANSFER_TIMEOUT(len));
}
STATIC const mp_machine_spi_p_t machine_hard_spi_p = {
.init = machine_hard_spi_init,
.deinit = machine_hard_spi_deinit,
.transfer = machine_hard_spi_transfer,
};
const mp_obj_type_t machine_hard_spi_type = {
{ &mp_type_type },
.name = MP_QSTR_SPI,
.print = machine_hard_spi_print,
.make_new = mp_machine_spi_make_new, // delegate to master constructor
.protocol = &machine_hard_spi_p,
.locals_dict = (mp_obj_dict_t*)&mp_machine_spi_locals_dict,
};

Wyświetl plik

@ -0,0 +1,357 @@
/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2013-2018 Damien P. George
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "py/runtime.h"
#include "extmod/machine_spi.h"
#include "bufhelper.h"
#include "spi.h"
/******************************************************************************/
// MicroPython bindings for legacy pyb API
// class pyb.SPI - a master-driven serial protocol
//
// SPI is a serial protocol that is driven by a master. At the physical level
// there are 3 lines: SCK, MOSI, MISO.
//
// See usage model of I2C; SPI is very similar. Main difference is
// parameters to init the SPI bus:
//
// from pyb import SPI
// spi = SPI(1, SPI.MASTER, baudrate=600000, polarity=1, phase=0, crc=0x7)
//
// Only required parameter is mode, SPI.MASTER or SPI.SLAVE. Polarity can be
// 0 or 1, and is the level the idle clock line sits at. Phase can be 0 or 1
// to sample data on the first or second clock edge respectively. Crc can be
// None for no CRC, or a polynomial specifier.
//
// Additional method for SPI:
//
// data = spi.send_recv(b'1234') # send 4 bytes and receive 4 bytes
// buf = bytearray(4)
// spi.send_recv(b'1234', buf) # send 4 bytes and receive 4 into buf
// spi.send_recv(buf, buf) # send/recv 4 bytes from/to buf
STATIC const pyb_spi_obj_t pyb_spi_obj[] = {
{{&pyb_spi_type}, &spi_obj[0]},
{{&pyb_spi_type}, &spi_obj[1]},
{{&pyb_spi_type}, &spi_obj[2]},
{{&pyb_spi_type}, &spi_obj[3]},
{{&pyb_spi_type}, &spi_obj[4]},
{{&pyb_spi_type}, &spi_obj[5]},
};
STATIC void pyb_spi_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) {
pyb_spi_obj_t *self = MP_OBJ_TO_PTR(self_in);
spi_print(print, self->spi, true);
}
// init(mode, baudrate=328125, *, polarity=1, phase=0, bits=8, firstbit=SPI.MSB, ti=False, crc=None)
//
// Initialise the SPI bus with the given parameters:
// - `mode` must be either `SPI.MASTER` or `SPI.SLAVE`.
// - `baudrate` is the SCK clock rate (only sensible for a master).
STATIC mp_obj_t pyb_spi_init_helper(const pyb_spi_obj_t *self, size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_mode, MP_ARG_REQUIRED | MP_ARG_INT, {.u_int = 0} },
{ MP_QSTR_baudrate, MP_ARG_INT, {.u_int = 328125} },
{ MP_QSTR_prescaler, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0xffffffff} },
{ MP_QSTR_polarity, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 1} },
{ MP_QSTR_phase, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0} },
{ MP_QSTR_dir, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = SPI_DIRECTION_2LINES} },
{ MP_QSTR_bits, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 8} },
{ MP_QSTR_nss, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = SPI_NSS_SOFT} },
{ MP_QSTR_firstbit, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = SPI_FIRSTBIT_MSB} },
{ MP_QSTR_ti, MP_ARG_KW_ONLY | MP_ARG_BOOL, {.u_bool = false} },
{ MP_QSTR_crc, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_rom_obj = MP_ROM_PTR(&mp_const_none_obj)} },
};
// parse args
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
// set the SPI configuration values
SPI_InitTypeDef *init = &self->spi->spi->Init;
init->Mode = args[0].u_int;
spi_set_params(self->spi, args[2].u_int, args[1].u_int, args[3].u_int, args[4].u_int,
args[6].u_int, args[8].u_int);
init->Direction = args[5].u_int;
init->NSS = args[7].u_int;
init->TIMode = args[9].u_bool ? SPI_TIMODE_ENABLE : SPI_TIMODE_DISABLE;
if (args[10].u_obj == mp_const_none) {
init->CRCCalculation = SPI_CRCCALCULATION_DISABLE;
init->CRCPolynomial = 0;
} else {
init->CRCCalculation = SPI_CRCCALCULATION_ENABLE;
init->CRCPolynomial = mp_obj_get_int(args[10].u_obj);
}
// init the SPI bus
spi_init(self->spi, init->NSS != SPI_NSS_SOFT);
return mp_const_none;
}
// constructor(bus, ...)
//
// Construct an SPI object on the given bus. `bus` can be 1 or 2.
// With no additional parameters, the SPI object is created but not
// initialised (it has the settings from the last initialisation of
// the bus, if any). If extra arguments are given, the bus is initialised.
// See `init` for parameters of initialisation.
//
// The physical pins of the SPI busses are:
// - `SPI(1)` is on the X position: `(NSS, SCK, MISO, MOSI) = (X5, X6, X7, X8) = (PA4, PA5, PA6, PA7)`
// - `SPI(2)` is on the Y position: `(NSS, SCK, MISO, MOSI) = (Y5, Y6, Y7, Y8) = (PB12, PB13, PB14, PB15)`
//
// At the moment, the NSS pin is not used by the SPI driver and is free
// for other use.
STATIC mp_obj_t pyb_spi_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *args) {
// check arguments
mp_arg_check_num(n_args, n_kw, 1, MP_OBJ_FUN_ARGS_MAX, true);
// work out SPI bus
int spi_id = spi_find_index(args[0]);
// get SPI object
const pyb_spi_obj_t *spi_obj = &pyb_spi_obj[spi_id - 1];
if (n_args > 1 || n_kw > 0) {
// start the peripheral
mp_map_t kw_args;
mp_map_init_fixed_table(&kw_args, n_kw, args + n_args);
pyb_spi_init_helper(spi_obj, n_args - 1, args + 1, &kw_args);
}
return MP_OBJ_FROM_PTR(spi_obj);
}
STATIC mp_obj_t pyb_spi_init(size_t n_args, const mp_obj_t *args, mp_map_t *kw_args) {
return pyb_spi_init_helper(MP_OBJ_TO_PTR(args[0]), n_args - 1, args + 1, kw_args);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_spi_init_obj, 1, pyb_spi_init);
// deinit()
// Turn off the SPI bus.
STATIC mp_obj_t pyb_spi_deinit(mp_obj_t self_in) {
pyb_spi_obj_t *self = MP_OBJ_TO_PTR(self_in);
spi_deinit(self->spi);
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_spi_deinit_obj, pyb_spi_deinit);
// send(send, *, timeout=5000)
// Send data on the bus:
// - `send` is the data to send (an integer to send, or a buffer object).
// - `timeout` is the timeout in milliseconds to wait for the send.
//
// Return value: `None`.
STATIC mp_obj_t pyb_spi_send(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
// TODO assumes transmission size is 8-bits wide
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_send, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} },
{ MP_QSTR_timeout, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 5000} },
};
// parse args
pyb_spi_obj_t *self = MP_OBJ_TO_PTR(pos_args[0]);
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args - 1, pos_args + 1, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
// get the buffer to send from
mp_buffer_info_t bufinfo;
uint8_t data[1];
pyb_buf_get_for_send(args[0].u_obj, &bufinfo, data);
// send the data
spi_transfer(self->spi, bufinfo.len, bufinfo.buf, NULL, args[1].u_int);
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_spi_send_obj, 1, pyb_spi_send);
// recv(recv, *, timeout=5000)
//
// Receive data on the bus:
// - `recv` can be an integer, which is the number of bytes to receive,
// or a mutable buffer, which will be filled with received bytes.
// - `timeout` is the timeout in milliseconds to wait for the receive.
//
// Return value: if `recv` is an integer then a new buffer of the bytes received,
// otherwise the same buffer that was passed in to `recv`.
STATIC mp_obj_t pyb_spi_recv(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
// TODO assumes transmission size is 8-bits wide
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_recv, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} },
{ MP_QSTR_timeout, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 5000} },
};
// parse args
pyb_spi_obj_t *self = MP_OBJ_TO_PTR(pos_args[0]);
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args - 1, pos_args + 1, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
// get the buffer to receive into
vstr_t vstr;
mp_obj_t o_ret = pyb_buf_get_for_recv(args[0].u_obj, &vstr);
// receive the data
spi_transfer(self->spi, vstr.len, NULL, (uint8_t*)vstr.buf, args[1].u_int);
// return the received data
if (o_ret != MP_OBJ_NULL) {
return o_ret;
} else {
return mp_obj_new_str_from_vstr(&mp_type_bytes, &vstr);
}
}
STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_spi_recv_obj, 1, pyb_spi_recv);
// send_recv(send, recv=None, *, timeout=5000)
//
// Send and receive data on the bus at the same time:
// - `send` is the data to send (an integer to send, or a buffer object).
// - `recv` is a mutable buffer which will be filled with received bytes.
// It can be the same as `send`, or omitted. If omitted, a new buffer will
// be created.
// - `timeout` is the timeout in milliseconds to wait for the receive.
//
// Return value: the buffer with the received bytes.
STATIC mp_obj_t pyb_spi_send_recv(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
// TODO assumes transmission size is 8-bits wide
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_send, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} },
{ MP_QSTR_recv, MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} },
{ MP_QSTR_timeout, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 5000} },
};
// parse args
pyb_spi_obj_t *self = MP_OBJ_TO_PTR(pos_args[0]);
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args - 1, pos_args + 1, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
// get buffers to send from/receive to
mp_buffer_info_t bufinfo_send;
uint8_t data_send[1];
mp_buffer_info_t bufinfo_recv;
vstr_t vstr_recv;
mp_obj_t o_ret;
if (args[0].u_obj == args[1].u_obj) {
// same object for send and receive, it must be a r/w buffer
mp_get_buffer_raise(args[0].u_obj, &bufinfo_send, MP_BUFFER_RW);
bufinfo_recv = bufinfo_send;
o_ret = args[0].u_obj;
} else {
// get the buffer to send from
pyb_buf_get_for_send(args[0].u_obj, &bufinfo_send, data_send);
// get the buffer to receive into
if (args[1].u_obj == MP_OBJ_NULL) {
// only send argument given, so create a fresh buffer of the send length
vstr_init_len(&vstr_recv, bufinfo_send.len);
bufinfo_recv.len = vstr_recv.len;
bufinfo_recv.buf = vstr_recv.buf;
o_ret = MP_OBJ_NULL;
} else {
// recv argument given
mp_get_buffer_raise(args[1].u_obj, &bufinfo_recv, MP_BUFFER_WRITE);
if (bufinfo_recv.len != bufinfo_send.len) {
mp_raise_ValueError("recv must be same length as send");
}
o_ret = args[1].u_obj;
}
}
// do the transfer
spi_transfer(self->spi, bufinfo_send.len, bufinfo_send.buf, bufinfo_recv.buf, args[2].u_int);
// return the received data
if (o_ret != MP_OBJ_NULL) {
return o_ret;
} else {
return mp_obj_new_str_from_vstr(&mp_type_bytes, &vstr_recv);
}
}
STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_spi_send_recv_obj, 1, pyb_spi_send_recv);
STATIC const mp_rom_map_elem_t pyb_spi_locals_dict_table[] = {
// instance methods
{ MP_ROM_QSTR(MP_QSTR_init), MP_ROM_PTR(&pyb_spi_init_obj) },
{ MP_ROM_QSTR(MP_QSTR_deinit), MP_ROM_PTR(&pyb_spi_deinit_obj) },
{ MP_ROM_QSTR(MP_QSTR_read), MP_ROM_PTR(&mp_machine_spi_read_obj) },
{ MP_ROM_QSTR(MP_QSTR_readinto), MP_ROM_PTR(&mp_machine_spi_readinto_obj) },
{ MP_ROM_QSTR(MP_QSTR_write), MP_ROM_PTR(&mp_machine_spi_write_obj) },
{ MP_ROM_QSTR(MP_QSTR_write_readinto), MP_ROM_PTR(&mp_machine_spi_write_readinto_obj) },
// legacy methods
{ MP_ROM_QSTR(MP_QSTR_send), MP_ROM_PTR(&pyb_spi_send_obj) },
{ MP_ROM_QSTR(MP_QSTR_recv), MP_ROM_PTR(&pyb_spi_recv_obj) },
{ MP_ROM_QSTR(MP_QSTR_send_recv), MP_ROM_PTR(&pyb_spi_send_recv_obj) },
// class constants
/// \constant MASTER - for initialising the bus to master mode
/// \constant SLAVE - for initialising the bus to slave mode
/// \constant MSB - set the first bit to MSB
/// \constant LSB - set the first bit to LSB
{ MP_ROM_QSTR(MP_QSTR_MASTER), MP_ROM_INT(SPI_MODE_MASTER) },
{ MP_ROM_QSTR(MP_QSTR_SLAVE), MP_ROM_INT(SPI_MODE_SLAVE) },
{ MP_ROM_QSTR(MP_QSTR_MSB), MP_ROM_INT(SPI_FIRSTBIT_MSB) },
{ MP_ROM_QSTR(MP_QSTR_LSB), MP_ROM_INT(SPI_FIRSTBIT_LSB) },
/* TODO
{ MP_ROM_QSTR(MP_QSTR_DIRECTION_2LINES ((uint32_t)0x00000000)
{ MP_ROM_QSTR(MP_QSTR_DIRECTION_2LINES_RXONLY SPI_CR1_RXONLY
{ MP_ROM_QSTR(MP_QSTR_DIRECTION_1LINE SPI_CR1_BIDIMODE
{ MP_ROM_QSTR(MP_QSTR_NSS_SOFT SPI_CR1_SSM
{ MP_ROM_QSTR(MP_QSTR_NSS_HARD_INPUT ((uint32_t)0x00000000)
{ MP_ROM_QSTR(MP_QSTR_NSS_HARD_OUTPUT ((uint32_t)0x00040000)
*/
};
STATIC MP_DEFINE_CONST_DICT(pyb_spi_locals_dict, pyb_spi_locals_dict_table);
STATIC void spi_transfer_machine(mp_obj_base_t *self_in, size_t len, const uint8_t *src, uint8_t *dest) {
pyb_spi_obj_t *self = (pyb_spi_obj_t*)self_in;
spi_transfer(self->spi, len, src, dest, SPI_TRANSFER_TIMEOUT(len));
}
STATIC const mp_machine_spi_p_t pyb_spi_p = {
.transfer = spi_transfer_machine,
};
const mp_obj_type_t pyb_spi_type = {
{ &mp_type_type },
.name = MP_QSTR_SPI,
.print = pyb_spi_print,
.make_new = pyb_spi_make_new,
.protocol = &pyb_spi_p,
.locals_dict = (mp_obj_dict_t*)&pyb_spi_locals_dict,
};

Wyświetl plik

@ -3,7 +3,7 @@
*
* The MIT License (MIT)
*
* Copyright (c) 2013, 2014 Damien P. George
* Copyright (c) 2013-2018 Damien P. George
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
@ -29,36 +29,8 @@
#include "py/runtime.h"
#include "py/mphal.h"
#include "extmod/machine_spi.h"
#include "irq.h"
#include "pin.h"
#include "bufhelper.h"
#include "spi.h"
/// \moduleref pyb
/// \class SPI - a master-driven serial protocol
///
/// SPI is a serial protocol that is driven by a master. At the physical level
/// there are 3 lines: SCK, MOSI, MISO.
///
/// See usage model of I2C; SPI is very similar. Main difference is
/// parameters to init the SPI bus:
///
/// from pyb import SPI
/// spi = SPI(1, SPI.MASTER, baudrate=600000, polarity=1, phase=0, crc=0x7)
///
/// Only required parameter is mode, SPI.MASTER or SPI.SLAVE. Polarity can be
/// 0 or 1, and is the level the idle clock line sits at. Phase can be 0 or 1
/// to sample data on the first or second clock edge respectively. Crc can be
/// None for no CRC, or a polynomial specifier.
///
/// Additional method for SPI:
///
/// data = spi.send_recv(b'1234') # send 4 bytes and receive 4 bytes
/// buf = bytearray(4)
/// spi.send_recv(b'1234', buf) # send 4 bytes and receive 4 into buf
/// spi.send_recv(buf, buf) # send/recv 4 bytes from/to buf
// Possible DMA configurations for SPI busses:
// SPI1_TX: DMA2_Stream3.CHANNEL_3 or DMA2_Stream5.CHANNEL_3
// SPI1_RX: DMA2_Stream0.CHANNEL_3 or DMA2_Stream2.CHANNEL_3
@ -148,7 +120,7 @@ void spi_init0(void) {
#endif
}
STATIC int spi_find(mp_obj_t id) {
int spi_find_index(mp_obj_t id) {
if (MP_OBJ_IS_STR(id)) {
// given a string id
const char *port = mp_obj_str_get_str(id);
@ -194,7 +166,7 @@ STATIC int spi_find(mp_obj_t id) {
// sets the parameters in the SPI_InitTypeDef struct
// if an argument is -1 then the corresponding parameter is not changed
STATIC void spi_set_params(const spi_t *spi_obj, uint32_t prescale, int32_t baudrate,
void spi_set_params(const spi_t *spi_obj, uint32_t prescale, int32_t baudrate,
int32_t polarity, int32_t phase, int32_t bits, int32_t firstbit) {
SPI_HandleTypeDef *spi = spi_obj->spi;
SPI_InitTypeDef *init = &spi->Init;
@ -419,12 +391,7 @@ STATIC HAL_StatusTypeDef spi_wait_dma_finished(const spi_t *spi, uint32_t t_star
return HAL_OK;
}
// A transfer of "len" bytes should take len*8*1000/baudrate milliseconds.
// To simplify the calculation we assume the baudrate is never less than 8kHz
// and use that value for the baudrate in the formula, plus a small constant.
#define SPI_TRANSFER_TIMEOUT(len) ((len) + 100)
STATIC void spi_transfer(const spi_t *self, size_t len, const uint8_t *src, uint8_t *dest, uint32_t timeout) {
void spi_transfer(const spi_t *self, size_t len, const uint8_t *src, uint8_t *dest, uint32_t timeout) {
// Note: there seems to be a problem sending 1 byte using DMA the first
// time directly after the SPI/DMA is initialised. The cause of this is
// unknown but we sidestep the issue by using polling for 1 byte transfer.
@ -531,7 +498,7 @@ STATIC void spi_transfer(const spi_t *self, size_t len, const uint8_t *src, uint
}
}
STATIC void spi_print(const mp_print_t *print, const spi_t *spi_obj, bool legacy) {
void spi_print(const mp_print_t *print, const spi_t *spi_obj, bool legacy) {
SPI_HandleTypeDef *spi = spi_obj->spi;
uint spi_num = 1; // default to SPI1
@ -585,440 +552,6 @@ STATIC void spi_print(const mp_print_t *print, const spi_t *spi_obj, bool legacy
mp_print_str(print, ")");
}
/******************************************************************************/
/* MicroPython bindings for legacy pyb API */
typedef struct _pyb_spi_obj_t {
mp_obj_base_t base;
const spi_t *spi;
} pyb_spi_obj_t;
STATIC const pyb_spi_obj_t pyb_spi_obj[] = {
{{&pyb_spi_type}, &spi_obj[0]},
{{&pyb_spi_type}, &spi_obj[1]},
{{&pyb_spi_type}, &spi_obj[2]},
{{&pyb_spi_type}, &spi_obj[3]},
{{&pyb_spi_type}, &spi_obj[4]},
{{&pyb_spi_type}, &spi_obj[5]},
};
STATIC void pyb_spi_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) {
pyb_spi_obj_t *self = MP_OBJ_TO_PTR(self_in);
spi_print(print, self->spi, true);
}
/// \method init(mode, baudrate=328125, *, polarity=1, phase=0, bits=8, firstbit=SPI.MSB, ti=False, crc=None)
///
/// Initialise the SPI bus with the given parameters:
///
/// - `mode` must be either `SPI.MASTER` or `SPI.SLAVE`.
/// - `baudrate` is the SCK clock rate (only sensible for a master).
STATIC mp_obj_t pyb_spi_init_helper(const pyb_spi_obj_t *self, size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_mode, MP_ARG_REQUIRED | MP_ARG_INT, {.u_int = 0} },
{ MP_QSTR_baudrate, MP_ARG_INT, {.u_int = 328125} },
{ MP_QSTR_prescaler, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0xffffffff} },
{ MP_QSTR_polarity, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 1} },
{ MP_QSTR_phase, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0} },
{ MP_QSTR_dir, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = SPI_DIRECTION_2LINES} },
{ MP_QSTR_bits, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 8} },
{ MP_QSTR_nss, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = SPI_NSS_SOFT} },
{ MP_QSTR_firstbit, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = SPI_FIRSTBIT_MSB} },
{ MP_QSTR_ti, MP_ARG_KW_ONLY | MP_ARG_BOOL, {.u_bool = false} },
{ MP_QSTR_crc, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_rom_obj = MP_ROM_PTR(&mp_const_none_obj)} },
};
// parse args
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
// set the SPI configuration values
SPI_InitTypeDef *init = &self->spi->spi->Init;
init->Mode = args[0].u_int;
spi_set_params(self->spi, args[2].u_int, args[1].u_int, args[3].u_int, args[4].u_int,
args[6].u_int, args[8].u_int);
init->Direction = args[5].u_int;
init->NSS = args[7].u_int;
init->TIMode = args[9].u_bool ? SPI_TIMODE_ENABLE : SPI_TIMODE_DISABLE;
if (args[10].u_obj == mp_const_none) {
init->CRCCalculation = SPI_CRCCALCULATION_DISABLE;
init->CRCPolynomial = 0;
} else {
init->CRCCalculation = SPI_CRCCALCULATION_ENABLE;
init->CRCPolynomial = mp_obj_get_int(args[10].u_obj);
}
// init the SPI bus
spi_init(self->spi, init->NSS != SPI_NSS_SOFT);
return mp_const_none;
}
/// \classmethod \constructor(bus, ...)
///
/// Construct an SPI object on the given bus. `bus` can be 1 or 2.
/// With no additional parameters, the SPI object is created but not
/// initialised (it has the settings from the last initialisation of
/// the bus, if any). If extra arguments are given, the bus is initialised.
/// See `init` for parameters of initialisation.
///
/// The physical pins of the SPI busses are:
///
/// - `SPI(1)` is on the X position: `(NSS, SCK, MISO, MOSI) = (X5, X6, X7, X8) = (PA4, PA5, PA6, PA7)`
/// - `SPI(2)` is on the Y position: `(NSS, SCK, MISO, MOSI) = (Y5, Y6, Y7, Y8) = (PB12, PB13, PB14, PB15)`
///
/// At the moment, the NSS pin is not used by the SPI driver and is free
/// for other use.
STATIC mp_obj_t pyb_spi_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *args) {
// check arguments
mp_arg_check_num(n_args, n_kw, 1, MP_OBJ_FUN_ARGS_MAX, true);
// work out SPI bus
int spi_id = spi_find(args[0]);
// get SPI object
const pyb_spi_obj_t *spi_obj = &pyb_spi_obj[spi_id - 1];
if (n_args > 1 || n_kw > 0) {
// start the peripheral
mp_map_t kw_args;
mp_map_init_fixed_table(&kw_args, n_kw, args + n_args);
pyb_spi_init_helper(spi_obj, n_args - 1, args + 1, &kw_args);
}
return MP_OBJ_FROM_PTR(spi_obj);
}
STATIC mp_obj_t pyb_spi_init(size_t n_args, const mp_obj_t *args, mp_map_t *kw_args) {
return pyb_spi_init_helper(MP_OBJ_TO_PTR(args[0]), n_args - 1, args + 1, kw_args);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_spi_init_obj, 1, pyb_spi_init);
/// \method deinit()
/// Turn off the SPI bus.
STATIC mp_obj_t pyb_spi_deinit(mp_obj_t self_in) {
pyb_spi_obj_t *self = MP_OBJ_TO_PTR(self_in);
spi_deinit(self->spi);
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_spi_deinit_obj, pyb_spi_deinit);
/// \method send(send, *, timeout=5000)
/// Send data on the bus:
///
/// - `send` is the data to send (an integer to send, or a buffer object).
/// - `timeout` is the timeout in milliseconds to wait for the send.
///
/// Return value: `None`.
STATIC mp_obj_t pyb_spi_send(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
// TODO assumes transmission size is 8-bits wide
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_send, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} },
{ MP_QSTR_timeout, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 5000} },
};
// parse args
pyb_spi_obj_t *self = MP_OBJ_TO_PTR(pos_args[0]);
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args - 1, pos_args + 1, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
// get the buffer to send from
mp_buffer_info_t bufinfo;
uint8_t data[1];
pyb_buf_get_for_send(args[0].u_obj, &bufinfo, data);
// send the data
spi_transfer(self->spi, bufinfo.len, bufinfo.buf, NULL, args[1].u_int);
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_spi_send_obj, 1, pyb_spi_send);
/// \method recv(recv, *, timeout=5000)
///
/// Receive data on the bus:
///
/// - `recv` can be an integer, which is the number of bytes to receive,
/// or a mutable buffer, which will be filled with received bytes.
/// - `timeout` is the timeout in milliseconds to wait for the receive.
///
/// Return value: if `recv` is an integer then a new buffer of the bytes received,
/// otherwise the same buffer that was passed in to `recv`.
STATIC mp_obj_t pyb_spi_recv(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
// TODO assumes transmission size is 8-bits wide
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_recv, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} },
{ MP_QSTR_timeout, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 5000} },
};
// parse args
pyb_spi_obj_t *self = MP_OBJ_TO_PTR(pos_args[0]);
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args - 1, pos_args + 1, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
// get the buffer to receive into
vstr_t vstr;
mp_obj_t o_ret = pyb_buf_get_for_recv(args[0].u_obj, &vstr);
// receive the data
spi_transfer(self->spi, vstr.len, NULL, (uint8_t*)vstr.buf, args[1].u_int);
// return the received data
if (o_ret != MP_OBJ_NULL) {
return o_ret;
} else {
return mp_obj_new_str_from_vstr(&mp_type_bytes, &vstr);
}
}
STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_spi_recv_obj, 1, pyb_spi_recv);
/// \method send_recv(send, recv=None, *, timeout=5000)
///
/// Send and receive data on the bus at the same time:
///
/// - `send` is the data to send (an integer to send, or a buffer object).
/// - `recv` is a mutable buffer which will be filled with received bytes.
/// It can be the same as `send`, or omitted. If omitted, a new buffer will
/// be created.
/// - `timeout` is the timeout in milliseconds to wait for the receive.
///
/// Return value: the buffer with the received bytes.
STATIC mp_obj_t pyb_spi_send_recv(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
// TODO assumes transmission size is 8-bits wide
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_send, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} },
{ MP_QSTR_recv, MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} },
{ MP_QSTR_timeout, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 5000} },
};
// parse args
pyb_spi_obj_t *self = MP_OBJ_TO_PTR(pos_args[0]);
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args - 1, pos_args + 1, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
// get buffers to send from/receive to
mp_buffer_info_t bufinfo_send;
uint8_t data_send[1];
mp_buffer_info_t bufinfo_recv;
vstr_t vstr_recv;
mp_obj_t o_ret;
if (args[0].u_obj == args[1].u_obj) {
// same object for send and receive, it must be a r/w buffer
mp_get_buffer_raise(args[0].u_obj, &bufinfo_send, MP_BUFFER_RW);
bufinfo_recv = bufinfo_send;
o_ret = args[0].u_obj;
} else {
// get the buffer to send from
pyb_buf_get_for_send(args[0].u_obj, &bufinfo_send, data_send);
// get the buffer to receive into
if (args[1].u_obj == MP_OBJ_NULL) {
// only send argument given, so create a fresh buffer of the send length
vstr_init_len(&vstr_recv, bufinfo_send.len);
bufinfo_recv.len = vstr_recv.len;
bufinfo_recv.buf = vstr_recv.buf;
o_ret = MP_OBJ_NULL;
} else {
// recv argument given
mp_get_buffer_raise(args[1].u_obj, &bufinfo_recv, MP_BUFFER_WRITE);
if (bufinfo_recv.len != bufinfo_send.len) {
mp_raise_ValueError("recv must be same length as send");
}
o_ret = args[1].u_obj;
}
}
// do the transfer
spi_transfer(self->spi, bufinfo_send.len, bufinfo_send.buf, bufinfo_recv.buf, args[2].u_int);
// return the received data
if (o_ret != MP_OBJ_NULL) {
return o_ret;
} else {
return mp_obj_new_str_from_vstr(&mp_type_bytes, &vstr_recv);
}
}
STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_spi_send_recv_obj, 1, pyb_spi_send_recv);
STATIC const mp_rom_map_elem_t pyb_spi_locals_dict_table[] = {
// instance methods
{ MP_ROM_QSTR(MP_QSTR_init), MP_ROM_PTR(&pyb_spi_init_obj) },
{ MP_ROM_QSTR(MP_QSTR_deinit), MP_ROM_PTR(&pyb_spi_deinit_obj) },
{ MP_ROM_QSTR(MP_QSTR_read), MP_ROM_PTR(&mp_machine_spi_read_obj) },
{ MP_ROM_QSTR(MP_QSTR_readinto), MP_ROM_PTR(&mp_machine_spi_readinto_obj) },
{ MP_ROM_QSTR(MP_QSTR_write), MP_ROM_PTR(&mp_machine_spi_write_obj) },
{ MP_ROM_QSTR(MP_QSTR_write_readinto), MP_ROM_PTR(&mp_machine_spi_write_readinto_obj) },
// legacy methods
{ MP_ROM_QSTR(MP_QSTR_send), MP_ROM_PTR(&pyb_spi_send_obj) },
{ MP_ROM_QSTR(MP_QSTR_recv), MP_ROM_PTR(&pyb_spi_recv_obj) },
{ MP_ROM_QSTR(MP_QSTR_send_recv), MP_ROM_PTR(&pyb_spi_send_recv_obj) },
// class constants
/// \constant MASTER - for initialising the bus to master mode
/// \constant SLAVE - for initialising the bus to slave mode
/// \constant MSB - set the first bit to MSB
/// \constant LSB - set the first bit to LSB
{ MP_ROM_QSTR(MP_QSTR_MASTER), MP_ROM_INT(SPI_MODE_MASTER) },
{ MP_ROM_QSTR(MP_QSTR_SLAVE), MP_ROM_INT(SPI_MODE_SLAVE) },
{ MP_ROM_QSTR(MP_QSTR_MSB), MP_ROM_INT(SPI_FIRSTBIT_MSB) },
{ MP_ROM_QSTR(MP_QSTR_LSB), MP_ROM_INT(SPI_FIRSTBIT_LSB) },
/* TODO
{ MP_ROM_QSTR(MP_QSTR_DIRECTION_2LINES ((uint32_t)0x00000000)
{ MP_ROM_QSTR(MP_QSTR_DIRECTION_2LINES_RXONLY SPI_CR1_RXONLY
{ MP_ROM_QSTR(MP_QSTR_DIRECTION_1LINE SPI_CR1_BIDIMODE
{ MP_ROM_QSTR(MP_QSTR_NSS_SOFT SPI_CR1_SSM
{ MP_ROM_QSTR(MP_QSTR_NSS_HARD_INPUT ((uint32_t)0x00000000)
{ MP_ROM_QSTR(MP_QSTR_NSS_HARD_OUTPUT ((uint32_t)0x00040000)
*/
};
STATIC MP_DEFINE_CONST_DICT(pyb_spi_locals_dict, pyb_spi_locals_dict_table);
STATIC void spi_transfer_machine(mp_obj_base_t *self_in, size_t len, const uint8_t *src, uint8_t *dest) {
pyb_spi_obj_t *self = (pyb_spi_obj_t*)self_in;
spi_transfer(self->spi, len, src, dest, SPI_TRANSFER_TIMEOUT(len));
}
STATIC const mp_machine_spi_p_t pyb_spi_p = {
.transfer = spi_transfer_machine,
};
const mp_obj_type_t pyb_spi_type = {
{ &mp_type_type },
.name = MP_QSTR_SPI,
.print = pyb_spi_print,
.make_new = pyb_spi_make_new,
.protocol = &pyb_spi_p,
.locals_dict = (mp_obj_dict_t*)&pyb_spi_locals_dict,
};
/******************************************************************************/
// Implementation of hard SPI for machine module
typedef struct _machine_hard_spi_obj_t {
mp_obj_base_t base;
const spi_t *spi;
} machine_hard_spi_obj_t;
STATIC const machine_hard_spi_obj_t machine_hard_spi_obj[] = {
{{&machine_hard_spi_type}, &spi_obj[0]},
{{&machine_hard_spi_type}, &spi_obj[1]},
{{&machine_hard_spi_type}, &spi_obj[2]},
{{&machine_hard_spi_type}, &spi_obj[3]},
{{&machine_hard_spi_type}, &spi_obj[4]},
{{&machine_hard_spi_type}, &spi_obj[5]},
};
STATIC void machine_hard_spi_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) {
machine_hard_spi_obj_t *self = MP_OBJ_TO_PTR(self_in);
spi_print(print, self->spi, false);
}
mp_obj_t machine_hard_spi_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *all_args) {
enum { ARG_id, ARG_baudrate, ARG_polarity, ARG_phase, ARG_bits, ARG_firstbit, ARG_sck, ARG_mosi, ARG_miso };
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_id, MP_ARG_OBJ, {.u_obj = MP_OBJ_NEW_SMALL_INT(-1)} },
{ MP_QSTR_baudrate, MP_ARG_INT, {.u_int = 500000} },
{ MP_QSTR_polarity, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0} },
{ MP_QSTR_phase, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0} },
{ MP_QSTR_bits, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 8} },
{ MP_QSTR_firstbit, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = SPI_FIRSTBIT_MSB} },
{ MP_QSTR_sck, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} },
{ MP_QSTR_mosi, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} },
{ MP_QSTR_miso, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} },
};
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all_kw_array(n_args, n_kw, all_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
// get static peripheral object
int spi_id = spi_find(args[ARG_id].u_obj);
const machine_hard_spi_obj_t *self = &machine_hard_spi_obj[spi_id - 1];
// here we would check the sck/mosi/miso pins and configure them, but it's not implemented
if (args[ARG_sck].u_obj != MP_OBJ_NULL
|| args[ARG_mosi].u_obj != MP_OBJ_NULL
|| args[ARG_miso].u_obj != MP_OBJ_NULL) {
mp_raise_ValueError("explicit choice of sck/mosi/miso is not implemented");
}
// set the SPI configuration values
SPI_InitTypeDef *init = &self->spi->spi->Init;
init->Mode = SPI_MODE_MASTER;
// these parameters are not currently configurable
init->Direction = SPI_DIRECTION_2LINES;
init->NSS = SPI_NSS_SOFT;
init->TIMode = SPI_TIMODE_DISABLE;
init->CRCCalculation = SPI_CRCCALCULATION_DISABLE;
init->CRCPolynomial = 0;
// set configurable paramaters
spi_set_params(self->spi, 0xffffffff, args[ARG_baudrate].u_int,
args[ARG_polarity].u_int, args[ARG_phase].u_int, args[ARG_bits].u_int,
args[ARG_firstbit].u_int);
// init the SPI bus
spi_init(self->spi, false);
return MP_OBJ_FROM_PTR(self);
}
STATIC void machine_hard_spi_init(mp_obj_base_t *self_in, size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
machine_hard_spi_obj_t *self = (machine_hard_spi_obj_t*)self_in;
enum { ARG_baudrate, ARG_polarity, ARG_phase, ARG_bits, ARG_firstbit };
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_baudrate, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = -1} },
{ MP_QSTR_polarity, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = -1} },
{ MP_QSTR_phase, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = -1} },
{ MP_QSTR_bits, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = -1} },
{ MP_QSTR_firstbit, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = -1} },
};
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
// set the SPI configuration values
spi_set_params(self->spi, 0xffffffff, args[ARG_baudrate].u_int,
args[ARG_polarity].u_int, args[ARG_phase].u_int, args[ARG_bits].u_int,
args[ARG_firstbit].u_int);
// re-init the SPI bus
spi_init(self->spi, false);
}
STATIC void machine_hard_spi_deinit(mp_obj_base_t *self_in) {
machine_hard_spi_obj_t *self = (machine_hard_spi_obj_t*)self_in;
spi_deinit(self->spi);
}
STATIC void machine_hard_spi_transfer(mp_obj_base_t *self_in, size_t len, const uint8_t *src, uint8_t *dest) {
machine_hard_spi_obj_t *self = (machine_hard_spi_obj_t*)self_in;
spi_transfer(self->spi, len, src, dest, SPI_TRANSFER_TIMEOUT(len));
}
STATIC const mp_machine_spi_p_t machine_hard_spi_p = {
.init = machine_hard_spi_init,
.deinit = machine_hard_spi_deinit,
.transfer = machine_hard_spi_transfer,
};
const mp_obj_type_t machine_hard_spi_type = {
{ &mp_type_type },
.name = MP_QSTR_SPI,
.print = machine_hard_spi_print,
.make_new = mp_machine_spi_make_new, // delegate to master constructor
.protocol = &machine_hard_spi_p,
.locals_dict = (mp_obj_dict_t*)&mp_machine_spi_locals_dict,
};
const spi_t *spi_from_mp_obj(mp_obj_t o) {
if (MP_OBJ_IS_TYPE(o, &pyb_spi_type)) {
pyb_spi_obj_t *self = MP_OBJ_TO_PTR(o);

Wyświetl plik

@ -34,6 +34,16 @@ typedef struct _spi_t {
const dma_descr_t *rx_dma_descr;
} spi_t;
typedef struct _pyb_spi_obj_t {
mp_obj_base_t base;
const spi_t *spi;
} pyb_spi_obj_t;
typedef struct _machine_hard_spi_obj_t {
mp_obj_base_t base;
const spi_t *spi;
} machine_hard_spi_obj_t;
extern SPI_HandleTypeDef SPIHandle1;
extern SPI_HandleTypeDef SPIHandle2;
extern SPI_HandleTypeDef SPIHandle3;
@ -47,8 +57,19 @@ extern const mp_obj_type_t pyb_spi_type;
extern const mp_obj_type_t machine_soft_spi_type;
extern const mp_obj_type_t machine_hard_spi_type;
// A transfer of "len" bytes should take len*8*1000/baudrate milliseconds.
// To simplify the calculation we assume the baudrate is never less than 8kHz
// and use that value for the baudrate in the formula, plus a small constant.
#define SPI_TRANSFER_TIMEOUT(len) ((len) + 100)
void spi_init0(void);
void spi_init(const spi_t *spi, bool enable_nss_pin);
void spi_deinit(const spi_t *spi_obj);
int spi_find_index(mp_obj_t id);
void spi_set_params(const spi_t *spi_obj, uint32_t prescale, int32_t baudrate,
int32_t polarity, int32_t phase, int32_t bits, int32_t firstbit);
void spi_transfer(const spi_t *self, size_t len, const uint8_t *src, uint8_t *dest, uint32_t timeout);
void spi_print(const mp_print_t *print, const spi_t *spi_obj, bool legacy);
const spi_t *spi_from_mp_obj(mp_obj_t o);
#endif // MICROPY_INCLUDED_STM32_SPI_H