extmod/uasyncio: Add new implementation of uasyncio module.

This commit adds a completely new implementation of the uasyncio module.
The aim of this version (compared to the original one in micropython-lib)
is to be more compatible with CPython's asyncio module, so that one can
more easily write code that runs under both MicroPython and CPython (and
reuse CPython asyncio libraries, follow CPython asyncio tutorials, etc).
Async code is not easy to write and any knowledge users already have from
CPython asyncio should transfer to uasyncio without effort, and vice versa.

The implementation here attempts to provide good compatibility with
CPython's asyncio while still being "micro" enough to run where MicroPython
runs. This follows the general philosophy of MicroPython itself, to make it
feel like Python.

The main change is to use a Task object for each coroutine.  This allows
more flexibility to queue tasks in various places, eg the main run loop,
tasks waiting on events, locks or other tasks.  It no longer requires
pre-allocating a fixed queue size for the main run loop.

A pairing heap is used to queue Tasks.

It's currently implemented in pure Python, separated into components with
lazy importing for optional components.  In the future parts of this
implementation can be moved to C to improve speed and reduce memory usage.
But the aim is to maintain a pure-Python version as a reference version.
pull/5332/head
Damien George 2019-11-13 21:07:58 +11:00
rodzic f05ae416ff
commit 63b9944382
7 zmienionych plików z 700 dodań i 0 usunięć

Wyświetl plik

@ -0,0 +1,26 @@
# MicroPython uasyncio module
# MIT license; Copyright (c) 2019 Damien P. George
from .core import *
__version__ = (3, 0, 0)
_attrs = {
"wait_for": "funcs",
"gather": "funcs",
"Event": "event",
"Lock": "lock",
"open_connection": "stream",
"start_server": "stream",
}
# Lazy loader, effectively does:
# global attr
# from .mod import attr
def __getattr__(attr):
mod = _attrs.get(attr, None)
if mod is None:
raise AttributeError(attr)
value = getattr(__import__(mod, None, None, True, 1), attr)
globals()[attr] = value
return value

Wyświetl plik

@ -0,0 +1,231 @@
# MicroPython uasyncio module
# MIT license; Copyright (c) 2019 Damien P. George
from time import ticks_ms as ticks, ticks_diff, ticks_add
import sys, select
# Import TaskQueue and Task
from .task import TaskQueue, Task
################################################################################
# Exceptions
class CancelledError(BaseException):
pass
class TimeoutError(Exception):
pass
################################################################################
# Sleep functions
# "Yield" once, then raise StopIteration
class SingletonGenerator:
def __init__(self):
self.state = None
self.exc = StopIteration()
def __iter__(self):
return self
def __next__(self):
if self.state is not None:
_task_queue.push_sorted(cur_task, self.state)
self.state = None
return None
else:
self.exc.__traceback__ = None
raise self.exc
# Pause task execution for the given time (integer in milliseconds, uPy extension)
# Use a SingletonGenerator to do it without allocating on the heap
def sleep_ms(t, sgen=SingletonGenerator()):
assert sgen.state is None
sgen.state = ticks_add(ticks(), t)
return sgen
# Pause task execution for the given time (in seconds)
def sleep(t):
return sleep_ms(int(t * 1000))
################################################################################
# Queue and poller for stream IO
class IOQueue:
def __init__(self):
self.poller = select.poll()
self.map = {} # maps id(stream) to [task_waiting_read, task_waiting_write, stream]
def _enqueue(self, s, idx):
if id(s) not in self.map:
entry = [None, None, s]
entry[idx] = cur_task
self.map[id(s)] = entry
self.poller.register(s, select.POLLIN if idx == 0 else select.POLLOUT)
else:
sm = self.map[id(s)]
assert sm[idx] is None
assert sm[1 - idx] is not None
sm[idx] = cur_task
self.poller.modify(s, select.POLLIN | select.POLLOUT)
# Link task to this IOQueue so it can be removed if needed
cur_task.data = self
def _dequeue(self, s):
del self.map[id(s)]
self.poller.unregister(s)
def queue_read(self, s):
self._enqueue(s, 0)
def queue_write(self, s):
self._enqueue(s, 1)
def remove(self, task):
while True:
del_s = None
for k in self.map: # Iterate without allocating on the heap
q0, q1, s = self.map[k]
if q0 is task or q1 is task:
del_s = s
break
if del_s is not None:
self._dequeue(s)
else:
break
def wait_io_event(self, dt):
for s, ev in self.poller.ipoll(dt):
sm = self.map[id(s)]
# print('poll', s, sm, ev)
if ev & ~select.POLLOUT and sm[0] is not None:
# POLLIN or error
_task_queue.push_head(sm[0])
sm[0] = None
if ev & ~select.POLLIN and sm[1] is not None:
# POLLOUT or error
_task_queue.push_head(sm[1])
sm[1] = None
if sm[0] is None and sm[1] is None:
self._dequeue(s)
elif sm[0] is None:
self.poller.modify(s, select.POLLOUT)
else:
self.poller.modify(s, select.POLLIN)
################################################################################
# Main run loop
# TaskQueue of Task instances
_task_queue = TaskQueue()
# Task queue and poller for stream IO
_io_queue = IOQueue()
# Ensure the awaitable is a task
def _promote_to_task(aw):
return aw if isinstance(aw, Task) else create_task(aw)
# Create and schedule a new task from a coroutine
def create_task(coro):
if not hasattr(coro, "send"):
raise TypeError("coroutine expected")
t = Task(coro, globals())
_task_queue.push_head(t)
return t
# Keep scheduling tasks until there are none left to schedule
def run_until_complete(main_task=None):
global cur_task
excs_all = (CancelledError, Exception) # To prevent heap allocation in loop
excs_stop = (CancelledError, StopIteration) # To prevent heap allocation in loop
while True:
# Wait until the head of _task_queue is ready to run
dt = 1
while dt > 0:
dt = -1
t = _task_queue.peek()
if t:
# A task waiting on _task_queue; "ph_key" is time to schedule task at
dt = max(0, ticks_diff(t.ph_key, ticks()))
elif not _io_queue.map:
# No tasks can be woken so finished running
return
# print('(poll {})'.format(dt), len(_io_queue.map))
_io_queue.wait_io_event(dt)
# Get next task to run and continue it
t = _task_queue.pop_head()
cur_task = t
try:
# Continue running the coroutine, it's responsible for rescheduling itself
exc = t.data
if not exc:
t.coro.send(None)
else:
t.data = None
t.coro.throw(exc)
except excs_all as er:
# Check the task is not on any event queue
assert t.data is None
# This task is done, check if it's the main task and then loop should stop
if t is main_task:
if isinstance(er, StopIteration):
return er.value
raise er
# Save return value of coro to pass up to caller
t.data = er
# Schedule any other tasks waiting on the completion of this task
waiting = False
if hasattr(t, "waiting"):
while t.waiting.peek():
_task_queue.push_head(t.waiting.pop_head())
waiting = True
t.waiting = None # Free waiting queue head
# Print out exception for detached tasks
if not waiting and not isinstance(er, excs_stop):
print("task raised exception:", t.coro)
sys.print_exception(er)
# Indicate task is done
t.coro = None
# Create a new task from a coroutine and run it until it finishes
def run(coro):
return run_until_complete(create_task(coro))
################################################################################
# Event loop wrapper
class Loop:
def create_task(self, coro):
return create_task(coro)
def run_forever(self):
run_until_complete()
# TODO should keep running until .stop() is called, even if there're no tasks left
def run_until_complete(self, aw):
return run_until_complete(_promote_to_task(aw))
def close(self):
pass
# The runq_len and waitq_len arguments are for legacy uasyncio compatibility
def get_event_loop(runq_len=0, waitq_len=0):
return Loop()

Wyświetl plik

@ -0,0 +1,31 @@
# MicroPython uasyncio module
# MIT license; Copyright (c) 2019-2020 Damien P. George
from . import core
# Event class for primitive events that can be waited on, set, and cleared
class Event:
def __init__(self):
self.state = False # False=unset; True=set
self.waiting = core.TaskQueue() # Queue of Tasks waiting on completion of this event
def is_set(self):
return self.state
def set(self):
# Event becomes set, schedule any tasks waiting on it
while self.waiting.peek():
core._task_queue.push_head(self.waiting.pop_head())
self.state = True
def clear(self):
self.state = False
async def wait(self):
if not self.state:
# Event not set, put the calling task on the event's waiting queue
self.waiting.push_head(core.cur_task)
# Set calling task's data to the event's queue so it can be removed if needed
core.cur_task.data = self.waiting
yield
return True

Wyświetl plik

@ -0,0 +1,50 @@
# MicroPython uasyncio module
# MIT license; Copyright (c) 2019-2020 Damien P. George
from . import core
async def wait_for(aw, timeout):
aw = core._promote_to_task(aw)
if timeout is None:
return await aw
def cancel(aw, timeout):
await core.sleep(timeout)
aw.cancel()
cancel_task = core.create_task(cancel(aw, timeout))
try:
ret = await aw
except core.CancelledError:
# Ignore CancelledError from aw, it's probably due to timeout
pass
finally:
# Cancel the "cancel" task if it's still active (optimisation instead of cancel_task.cancel())
if cancel_task.coro is not None:
core._task_queue.remove(cancel_task)
if cancel_task.coro is None:
# Cancel task ran to completion, ie there was a timeout
raise core.TimeoutError
return ret
async def gather(*aws, return_exceptions=False):
ts = [core._promote_to_task(aw) for aw in aws]
for i in range(len(ts)):
try:
# TODO handle cancel of gather itself
# if ts[i].coro:
# iter(ts[i]).waiting.push_head(cur_task)
# try:
# yield
# except CancelledError as er:
# # cancel all waiting tasks
# raise er
ts[i] = await ts[i]
except Exception as er:
if return_exceptions:
ts[i] = er
else:
raise er
return ts

Wyświetl plik

@ -0,0 +1,53 @@
# MicroPython uasyncio module
# MIT license; Copyright (c) 2019-2020 Damien P. George
from . import core
# Lock class for primitive mutex capability
class Lock:
def __init__(self):
# The state can take the following values:
# - 0: unlocked
# - 1: locked
# - <Task>: unlocked but this task has been scheduled to acquire the lock next
self.state = 0
# Queue of Tasks waiting to acquire this Lock
self.waiting = core.TaskQueue()
def locked(self):
return self.state == 1
def release(self):
if self.state != 1:
raise RuntimeError
if self.waiting.peek():
# Task(s) waiting on lock, schedule next Task
self.state = self.waiting.pop_head()
core._task_queue.push_head(self.state)
else:
# No Task waiting so unlock
self.state = 0
async def acquire(self):
if self.state != 0:
# Lock unavailable, put the calling Task on the waiting queue
self.waiting.push_head(core.cur_task)
# Set calling task's data to the lock's queue so it can be removed if needed
core.cur_task.data = self.waiting
try:
yield
except core.CancelledError as er:
if self.state == core.cur_task:
# Cancelled while pending on resume, schedule next waiting Task
self.state = 1
self.release()
raise er
# Lock available, set it as locked
self.state = 1
return True
async def __aenter__(self):
return await self.acquire()
async def __aexit__(self, exc_type, exc, tb):
return self.release()

Wyświetl plik

@ -0,0 +1,141 @@
# MicroPython uasyncio module
# MIT license; Copyright (c) 2019-2020 Damien P. George
from . import core
class Stream:
def __init__(self, s, e={}):
self.s = s
self.e = e
self.out_buf = b""
def get_extra_info(self, v):
return self.e[v]
async def __aenter__(self):
return self
async def __aexit__(self, exc_type, exc, tb):
await self.close()
def close(self):
pass
async def wait_closed(self):
# TODO yield?
self.s.close()
async def read(self, n):
yield core._io_queue.queue_read(self.s)
return self.s.read(n)
async def readline(self):
l = b""
while True:
yield core._io_queue.queue_read(self.s)
l2 = self.s.readline() # may do multiple reads but won't block
l += l2
if not l2 or l[-1] == 10: # \n (check l in case l2 is str)
return l
def write(self, buf):
self.out_buf += buf
async def drain(self):
mv = memoryview(self.out_buf)
off = 0
while off < len(mv):
yield core._io_queue.queue_write(self.s)
ret = self.s.write(mv[off:])
if ret is not None:
off += ret
self.out_buf = b""
# Create a TCP stream connection to a remote host
async def open_connection(host, port):
from uerrno import EINPROGRESS
import usocket as socket
ai = socket.getaddrinfo(host, port)[0] # TODO this is blocking!
s = socket.socket()
s.setblocking(False)
ss = Stream(s)
try:
s.connect(ai[-1])
except OSError as er:
if er.args[0] != EINPROGRESS:
raise er
yield core._io_queue.queue_write(s)
return ss, ss
# Class representing a TCP stream server, can be closed and used in "async with"
class Server:
async def __aenter__(self):
return self
async def __aexit__(self, exc_type, exc, tb):
self.close()
await self.wait_closed()
def close(self):
self.task.cancel()
async def wait_closed(self):
await self.task
async def _serve(self, cb, host, port, backlog):
import usocket as socket
ai = socket.getaddrinfo(host, port)[0] # TODO this is blocking!
s = socket.socket()
s.setblocking(False)
s.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
s.bind(ai[-1])
s.listen(backlog)
self.task = core.cur_task
# Accept incoming connections
while True:
try:
yield core._io_queue.queue_read(s)
except core.CancelledError:
# Shutdown server
s.close()
return
try:
s2, addr = s.accept()
except:
# Ignore a failed accept
continue
s2.setblocking(False)
s2s = Stream(s2, {"peername": addr})
core.create_task(cb(s2s, s2s))
# Helper function to start a TCP stream server, running as a new task
# TODO could use an accept-callback on socket read activity instead of creating a task
async def start_server(cb, host, port, backlog=5):
s = Server()
core.create_task(s._serve(cb, host, port, backlog))
return s
################################################################################
# Legacy uasyncio compatibility
async def stream_awrite(self, buf, off=0, sz=-1):
if off != 0 or sz != -1:
buf = memoryview(buf)
if sz == -1:
sz = len(buf)
buf = buf[off : off + sz]
self.write(buf)
await self.drain()
Stream.aclose = Stream.wait_closed
Stream.awrite = stream_awrite
Stream.awritestr = stream_awrite # TODO explicitly convert to bytes?

Wyświetl plik

@ -0,0 +1,168 @@
# MicroPython uasyncio module
# MIT license; Copyright (c) 2019-2020 Damien P. George
# This file contains the core TaskQueue based on a pairing heap, and the core Task class.
# They can optionally be replaced by C implementations.
from . import core
# pairing-heap meld of 2 heaps; O(1)
def ph_meld(h1, h2):
if h1 is None:
return h2
if h2 is None:
return h1
lt = core.ticks_diff(h1.ph_key, h2.ph_key) < 0
if lt:
if h1.ph_child is None:
h1.ph_child = h2
else:
h1.ph_child_last.ph_next = h2
h1.ph_child_last = h2
h2.ph_next = None
h2.ph_rightmost_parent = h1
return h1
else:
h1.ph_next = h2.ph_child
h2.ph_child = h1
if h1.ph_next is None:
h2.ph_child_last = h1
h1.ph_rightmost_parent = h2
return h2
# pairing-heap pairing operation; amortised O(log N)
def ph_pairing(child):
heap = None
while child is not None:
n1 = child
child = child.ph_next
n1.ph_next = None
if child is not None:
n2 = child
child = child.ph_next
n2.ph_next = None
n1 = ph_meld(n1, n2)
heap = ph_meld(heap, n1)
return heap
# pairing-heap delete of a node; stable, amortised O(log N)
def ph_delete(heap, node):
if node is heap:
child = heap.ph_child
node.ph_child = None
return ph_pairing(child)
# Find parent of node
parent = node
while parent.ph_next is not None:
parent = parent.ph_next
parent = parent.ph_rightmost_parent
# Replace node with pairing of its children
if node is parent.ph_child and node.ph_child is None:
parent.ph_child = node.ph_next
node.ph_next = None
return heap
elif node is parent.ph_child:
child = node.ph_child
next = node.ph_next
node.ph_child = None
node.ph_next = None
node = ph_pairing(child)
parent.ph_child = node
else:
n = parent.ph_child
while node is not n.ph_next:
n = n.ph_next
child = node.ph_child
next = node.ph_next
node.ph_child = None
node.ph_next = None
node = ph_pairing(child)
if node is None:
node = n
else:
n.ph_next = node
node.ph_next = next
if next is None:
node.ph_rightmost_parent = parent
parent.ph_child_last = node
return heap
# TaskQueue class based on the above pairing-heap functions.
class TaskQueue:
def __init__(self):
self.heap = None
def peek(self):
return self.heap
def push_sorted(self, v, key):
v.data = None
v.ph_key = key
v.ph_child = None
v.ph_next = None
self.heap = ph_meld(v, self.heap)
def push_head(self, v):
self.push_sorted(v, core.ticks())
def pop_head(self):
v = self.heap
self.heap = ph_pairing(self.heap.ph_child)
return v
def remove(self, v):
self.heap = ph_delete(self.heap, v)
# Task class representing a coroutine, can be waited on and cancelled.
class Task:
def __init__(self, coro, globals=None):
self.coro = coro # Coroutine of this Task
self.data = None # General data for queue it is waiting on
self.ph_key = 0 # Pairing heap
self.ph_child = None # Paring heap
self.ph_child_last = None # Paring heap
self.ph_next = None # Paring heap
self.ph_rightmost_parent = None # Paring heap
def __iter__(self):
if not hasattr(self, "waiting"):
# Lazily allocated head of linked list of Tasks waiting on completion of this task.
self.waiting = TaskQueue()
return self
def __next__(self):
if not self.coro:
# Task finished, raise return value to caller so it can continue.
raise self.data
else:
# Put calling task on waiting queue.
self.waiting.push_head(core.cur_task)
# Set calling task's data to this task that it waits on, to double-link it.
core.cur_task.data = self
def cancel(self):
# Check if task is already finished.
if self.coro is None:
return False
# Can't cancel self (not supported yet).
if self is core.cur_task:
raise RuntimeError("cannot cancel self")
# If Task waits on another task then forward the cancel to the one it's waiting on.
while isinstance(self.data, Task):
self = self.data
# Reschedule Task as a cancelled task.
if hasattr(self.data, "remove"):
# Not on the main running queue, remove the task from the queue it's on.
self.data.remove(self)
core._task_queue.push_head(self)
elif core.ticks_diff(self.ph_key, core.ticks()) > 0:
# On the main running queue but scheduled in the future, so bring it forward to now.
core._task_queue.remove(self)
core._task_queue.push_head(self)
self.data = core.CancelledError
return True