micropython-waveshare-epaper/epaper1in54b.py

349 wiersze
14 KiB
Python

"""
MicroPython Waveshare 1.54" Black/White/Red GDEW0154Z04 e-paper display driver
https://github.com/mcauser/micropython-waveshare-epaper
MIT License
Copyright (c) 2017 Waveshare
Copyright (c) 2018 Mike Causer
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
"""
# also works for black/white/yellow GDEW0154C39?
from micropython import const
from time import sleep_ms
import ustruct
# Display resolution
EPD_WIDTH = const(200)
EPD_HEIGHT = const(200)
# Display commands
PANEL_SETTING = const(0x00) # in datasheet, but not in cmd table
POWER_SETTING = const(0x01)
POWER_OFF = const(0x02)
#POWER_OFF_SEQUENCE_SETTING = const(0x03) # not in datasheet
POWER_ON = const(0x04)
#POWER_ON_MEASURE = const(0x05) # not in datasheet
BOOSTER_SOFT_START = const(0x06)
#DEEP_SLEEP = const(0x07) # not in datasheet
DATA_START_TRANSMISSION_1 = const(0x10)
#DATA_STOP = const(0x11) # not in datasheet
DISPLAY_REFRESH = const(0x12)
DATA_START_TRANSMISSION_2 = const(0x13)
VCOM_LUT = const(0x20) # VCOM LUT
W2W_LUT = const(0x21) # White LUT
B2W_LUT = const(0x22) # Black LUT
W2B_LUT = const(0x23) # not in datasheet
B2B_LUT = const(0x24) # not in datasheet
LUT_RED_0 = const(0x25) # Red VCOM LUT
LUT_RED_1 = const(0x26) # Red0 LUT
LUT_RED_2 = const(0x27) # RED1 LUT
#LUT_RED_3 = const(0x28) # not in datasheet
PLL_CONTROL = const(0x30)
#TEMPERATURE_SENSOR_COMMAND = const(0x40)
#TEMPERATURE_SENSOR_CALIBRATION = const(0x41)
#TEMPERATURE_SENSOR_WRITE = const(0x42)
#TEMPERATURE_SENSOR_READ = const(0x43)
VCOM_AND_DATA_INTERVAL_SETTING = const(0x50)
#LOW_POWER_DETECTION = const(0x51) # not in datasheet
#TCON_SETTING = const(0x60) # not in datasheet
TCON_RESOLUTION = const(0x61)
#SOURCE_AND_GATE_START_SETTING = const(0x62) # not in datasheet
#GET_STATUS = const(0x71) # in datasheet, but not in cmd table
#AUTO_MEASURE_VCOM = const(0x80) # not in datasheet
#VCOM_VALUE = const(0x81) # not in datasheet
VCM_DC_SETTING_REGISTER = const(0x82)
#PROGRAM_MODE = const(0xA0) # not in datasheet
#ACTIVE_PROGRAM = const(0xA1) # not in datasheet
#READ_OTP_DATA = const(0xA2) # not in datasheet
# Display orientation
ROTATE_0 = const(0)
ROTATE_90 = const(1)
ROTATE_180 = const(2)
ROTATE_270 = const(3)
BUSY = const(0) # 0=busy, 1=idle
class EPD:
def __init__(self, spi, cs, dc, rst, busy):
self.spi = spi
self.cs = cs
self.dc = dc
self.rst = rst
self.busy = busy
self.cs.init(self.cs.OUT, value=1)
self.dc.init(self.dc.OUT, value=0)
self.rst.init(self.rst.OUT, value=0)
self.busy.init(self.busy.IN)
self.width = EPD_WIDTH
self.height = EPD_HEIGHT
self.rotate = ROTATE_0
LUT_VCOM0 = bytearray(b'\x0E\x14\x01\x0A\x06\x04\x0A\x0A\x0F\x03\x03\x0C\x06\x0A\x00')
LUT_W = bytearray(b'\x0E\x14\x01\x0A\x46\x04\x8A\x4A\x0F\x83\x43\x0C\x86\x0A\x04')
LUT_B = bytearray(b'\x0E\x14\x01\x8A\x06\x04\x8A\x4A\x0F\x83\x43\x0C\x06\x4A\x04')
LUT_G1 = bytearray(b'\x8E\x94\x01\x8A\x06\x04\x8A\x4A\x0F\x83\x43\x0C\x06\x0A\x04')
LUT_G2 = LUT_G1
LUT_VCOM1 = bytearray(b'\x03\x1D\x01\x01\x08\x23\x37\x37\x01\x00\x00\x00\x00\x00\x00')
LUT_RED0 = bytearray(b'\x83\x5D\x01\x81\x48\x23\x77\x77\x01\x00\x00\x00\x00\x00\x00')
LUT_RED1 = LUT_VCOM1
def _command(self, command, data=None):
self.dc(0)
self.cs(0)
self.spi.write(bytearray([command]))
self.cs(1)
if data is not None:
self._data(data)
def _data(self, data):
self.dc(1)
self.cs(0)
self.spi.write(data)
self.cs(1)
def init(self):
self.reset()
self._command(POWER_SETTING, b'\x07\x00\x08\x00')
self._command(BOOSTER_SOFT_START, b'\x07\x07\x07')
self._command(POWER_ON)
self.wait_until_idle()
self._command(PANEL_SETTING, b'\xCF')
self._command(VCOM_AND_DATA_INTERVAL_SETTING, b'\x17') # for this panel, must be 0x17
self._command(PLL_CONTROL, b'\x39')
self._command(TCON_RESOLUTION, ustruct.pack(">BH", EPD_WIDTH, EPD_HEIGHT))
self._command(VCM_DC_SETTING_REGISTER, b'\x0E') # -1.4V
self.set_lut_bw()
self.set_lut_red()
def wait_until_idle(self):
while self.busy.value() == BUSY:
sleep_ms(100)
def reset(self):
self.rst(0)
sleep_ms(200)
self.rst(1)
sleep_ms(200)
def set_lut_bw(self):
self._command(VCOM_LUT, self.LUT_VCOM0) # vcom
self._command(W2W_LUT, self.LUT_W) # ww --
self._command(B2W_LUT, self.LUT_B) # bw r
self._command(W2B_LUT, self.LUT_G1) # wb w
self._command(B2B_LUT, self.LUT_G2) # bb b
def set_lut_red(self):
self._command(LUT_RED_0, self.LUT_VCOM1)
self._command(LUT_RED_1, self.LUT_RED0)
self._command(LUT_RED_2, self.LUT_RED1)
def display_frame(self, frame_buffer_black, frame_buffer_red):
if (frame_buffer_black != None):
self._command(DATA_START_TRANSMISSION_1)
sleep_ms(2)
for i in range(0, self.width * self.height // 8):
temp = 0x00
for bit in range(0, 4):
if (frame_buffer_black[i] & (0x80 >> bit) != 0):
temp |= 0xC0 >> (bit * 2)
self._data(bytearray([temp]))
temp = 0x00
for bit in range(4, 8):
if (frame_buffer_black[i] & (0x80 >> bit) != 0):
temp |= 0xC0 >> ((bit - 4) * 2)
self._data(bytearray([temp]))
sleep_ms(2)
if (frame_buffer_red != None):
self._command(DATA_START_TRANSMISSION_2)
sleep_ms(2)
for i in range(0, self.width * self.height // 8):
self._data(bytearray([frame_buffer_red[i]]))
sleep_ms(2)
self._command(DISPLAY_REFRESH)
self.wait_until_idle()
def set_rotate(self, rotate):
if (rotate == ROTATE_0):
self.rotate = ROTATE_0
self.width = EPD_WIDTH
self.height = EPD_HEIGHT
elif (rotate == ROTATE_90):
self.rotate = ROTATE_90
self.width = EPD_HEIGHT
self.height = EPD_WIDTH
elif (rotate == ROTATE_180):
self.rotate = ROTATE_180
self.width = EPD_WIDTH
self.height = EPD_HEIGHT
elif (rotate == ROTATE_270):
self.rotate = ROTATE_270
self.width = EPD_HEIGHT
self.height = EPD_WIDTH
def set_pixel(self, frame_buffer, x, y, colored):
if (x < 0 or x >= self.width or y < 0 or y >= self.height):
return
if (self.rotate == ROTATE_0):
self.set_absolute_pixel(frame_buffer, x, y, colored)
elif (self.rotate == ROTATE_90):
point_temp = x
x = EPD_WIDTH - y
y = point_temp
self.set_absolute_pixel(frame_buffer, x, y, colored)
elif (self.rotate == ROTATE_180):
x = EPD_WIDTH - x
y = EPD_HEIGHT- y
self.set_absolute_pixel(frame_buffer, x, y, colored)
elif (self.rotate == ROTATE_270):
point_temp = x
x = y
y = EPD_HEIGHT - point_temp
self.set_absolute_pixel(frame_buffer, x, y, colored)
def set_absolute_pixel(self, frame_buffer, x, y, colored):
# To avoid display orientation effects
# use EPD_WIDTH instead of self.width
# use EPD_HEIGHT instead of self.height
if (x < 0 or x >= EPD_WIDTH or y < 0 or y >= EPD_HEIGHT):
return
if (colored):
frame_buffer[(x + y * EPD_WIDTH) // 8] &= ~(0x80 >> (x % 8))
else:
frame_buffer[(x + y * EPD_WIDTH) // 8] |= 0x80 >> (x % 8)
def display_string_at(self, frame_buffer, x, y, text, font, colored):
image = Image.new('1', (self.width, self.height))
draw = ImageDraw.Draw(image)
draw.text((x, y), text, font = font, fill = 255)
# Set buffer to value of Python Imaging Library image.
# Image must be in mode 1.
pixels = image.load()
for y in range(self.height):
for x in range(self.width):
# Set the bits for the column of pixels at the current position.
if pixels[x, y] != 0:
self.set_pixel(frame_buffer, x, y, colored)
def draw_line(self, frame_buffer, x0, y0, x1, y1, colored):
# Bresenham algorithm
dx = abs(x1 - x0)
sx = 1 if x0 < x1 else -1
dy = -abs(y1 - y0)
sy = 1 if y0 < y1 else -1
err = dx + dy
while((x0 != x1) and (y0 != y1)):
self.set_pixel(frame_buffer, x0, y0 , colored)
if (2 * err >= dy):
err += dy
x0 += sx
if (2 * err <= dx):
err += dx
y0 += sy
def draw_horizontal_line(self, frame_buffer, x, y, width, colored):
for i in range(x, x + width):
self.set_pixel(frame_buffer, i, y, colored)
def draw_vertical_line(self, frame_buffer, x, y, height, colored):
for i in range(y, y + height):
self.set_pixel(frame_buffer, x, i, colored)
def draw_rectangle(self, frame_buffer, x0, y0, x1, y1, colored):
min_x = x0 if x1 > x0 else x1
max_x = x1 if x1 > x0 else x0
min_y = y0 if y1 > y0 else y1
max_y = y1 if y1 > y0 else y0
self.draw_horizontal_line(frame_buffer, min_x, min_y, max_x - min_x + 1, colored)
self.draw_horizontal_line(frame_buffer, min_x, max_y, max_x - min_x + 1, colored)
self.draw_vertical_line(frame_buffer, min_x, min_y, max_y - min_y + 1, colored)
self.draw_vertical_line(frame_buffer, max_x, min_y, max_y - min_y + 1, colored)
def draw_filled_rectangle(self, frame_buffer, x0, y0, x1, y1, colored):
min_x = x0 if x1 > x0 else x1
max_x = x1 if x1 > x0 else x0
min_y = y0 if y1 > y0 else y1
max_y = y1 if y1 > y0 else y0
for i in range(min_x, max_x + 1):
self.draw_vertical_line(frame_buffer, i, min_y, max_y - min_y + 1, colored)
def draw_circle(self, frame_buffer, x, y, radius, colored):
# Bresenham algorithm
x_pos = -radius
y_pos = 0
err = 2 - 2 * radius
if (x >= self.width or y >= self.height):
return
while True:
self.set_pixel(frame_buffer, x - x_pos, y + y_pos, colored)
self.set_pixel(frame_buffer, x + x_pos, y + y_pos, colored)
self.set_pixel(frame_buffer, x + x_pos, y - y_pos, colored)
self.set_pixel(frame_buffer, x - x_pos, y - y_pos, colored)
e2 = err
if (e2 <= y_pos):
y_pos += 1
err += y_pos * 2 + 1
if(-x_pos == y_pos and e2 <= x_pos):
e2 = 0
if (e2 > x_pos):
x_pos += 1
err += x_pos * 2 + 1
if x_pos > 0:
break
def draw_filled_circle(self, frame_buffer, x, y, radius, colored):
# Bresenham algorithm
x_pos = -radius
y_pos = 0
err = 2 - 2 * radius
if (x >= self.width or y >= self.height):
return
while True:
self.set_pixel(frame_buffer, x - x_pos, y + y_pos, colored)
self.set_pixel(frame_buffer, x + x_pos, y + y_pos, colored)
self.set_pixel(frame_buffer, x + x_pos, y - y_pos, colored)
self.set_pixel(frame_buffer, x - x_pos, y - y_pos, colored)
self.draw_horizontal_line(frame_buffer, x + x_pos, y + y_pos, 2 * (-x_pos) + 1, colored)
self.draw_horizontal_line(frame_buffer, x + x_pos, y - y_pos, 2 * (-x_pos) + 1, colored)
e2 = err
if (e2 <= y_pos):
y_pos += 1
err += y_pos * 2 + 1
if(-x_pos == y_pos and e2 <= x_pos):
e2 = 0
if (e2 > x_pos):
x_pos += 1
err += x_pos * 2 + 1
if x_pos > 0:
break
# to wake call reset() or init()
def sleep(self):
# TODO do we need to reset these here?
self._command(VCOM_AND_DATA_INTERVAL_SETTING, b'\x17') # for this panel, must be 0x17
self._command(VCM_DC_SETTING_REGISTER, b'\x00') # to solve Vcom drop
self._command(POWER_SETTING, b'\x02\x00\x00\x00') # gate switch to external
# /TODO
self.wait_until_idle()
self._command(POWER_OFF)