""" MicroPython Waveshare 2.9" Black/White/Red GDEW029Z10 e-paper display driver https://github.com/mcauser/micropython-waveshare-epaper MIT License Copyright (c) 2017 Waveshare Copyright (c) 2018 Mike Causer Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ # also works for black/white/yellow GDEW029C32? from micropython import const from time import sleep_ms import ustruct # Display resolution EPD_WIDTH = const(128) EPD_HEIGHT = const(296) # Display commands PANEL_SETTING = const(0x00) POWER_SETTING = const(0x01) POWER_OFF = const(0x02) #POWER_OFF_SEQUENCE_SETTING = const(0x03) POWER_ON = const(0x04) #POWER_ON_MEASURE = const(0x05) BOOSTER_SOFT_START = const(0x06) #DEEP_SLEEP = const(0x07) DATA_START_TRANSMISSION_1 = const(0x10) #DATA_STOP = const(0x11) DISPLAY_REFRESH = const(0x12) DATA_START_TRANSMISSION_2 = const(0x13) #PLL_CONTROL = const(0x30) #TEMPERATURE_SENSOR_COMMAND = const(0x40) #TEMPERATURE_SENSOR_CALIBRATION = const(0x41) #TEMPERATURE_SENSOR_WRITE = const(0x42) #TEMPERATURE_SENSOR_READ = const(0x43) VCOM_AND_DATA_INTERVAL_SETTING = const(0x50) #LOW_POWER_DETECTION = const(0x51) #TCON_SETTING = const(0x60) TCON_RESOLUTION = const(0x61) #GET_STATUS = const(0x71) #AUTO_MEASURE_VCOM = const(0x80) #VCOM_VALUE = const(0x81) VCM_DC_SETTING_REGISTER = const(0x82) #PARTIAL_WINDOW = const(0x90) #PARTIAL_IN = const(0x91) #PARTIAL_OUT = const(0x92) #PROGRAM_MODE = const(0xA0) #ACTIVE_PROGRAM = const(0xA1) #READ_OTP_DATA = const(0xA2) #POWER_SAVING = const(0xE3) # Display orientation ROTATE_0 = const(0) ROTATE_90 = const(1) ROTATE_180 = const(2) ROTATE_270 = const(3) BUSY = const(0) # 0=busy, 1=idle class EPD: def __init__(self, spi, cs, dc, rst, busy): self.spi = spi self.cs = cs self.dc = dc self.rst = rst self.busy = busy self.cs.init(self.cs.OUT, value=1) self.dc.init(self.dc.OUT, value=0) self.rst.init(self.rst.OUT, value=0) self.busy.init(self.busy.IN) self.width = EPD_WIDTH self.height = EPD_HEIGHT self.rotate = ROTATE_0 def _command(self, command, data=None): self.dc(0) self.cs(0) self.spi.write(bytearray([command])) self.cs(1) if data is not None: self._data(data) def _data(self, data): self.dc(1) self.cs(0) self.spi.write(data) self.cs(1) def init(self): self.reset() self._command(BOOSTER_SOFT_START, b'\x17\x17\x17') self._command(POWER_ON) self.wait_until_idle() self._command(PANEL_SETTING, b'\x8F') self._command(VCOM_AND_DATA_INTERVAL_SETTING, b'\x77') self._command(TCON_RESOLUTION, ustruct.pack(">BH", EPD_WIDTH, EPD_HEIGHT)) self._command(VCM_DC_SETTING_REGISTER, b'\x0A') def wait_until_idle(self): while self.busy.value() == BUSY: sleep_ms(100) def reset(self): self.rst(0) sleep_ms(200) self.rst(1) sleep_ms(200) def display_frame(self, frame_buffer_black, frame_buffer_red): if (frame_buffer_black != None): self._command(DATA_START_TRANSMISSION_1) sleep_ms(2) for i in range(0, self.width * self.height // 8): self._data(bytearray([frame_buffer_black[i]])) sleep_ms(2) if (frame_buffer_red != None): self._command(DATA_START_TRANSMISSION_2) sleep_ms(2) for i in range(0, self.width * self.height // 8): self._data(bytearray([frame_buffer_red[i]])) sleep_ms(2) self._command(DISPLAY_REFRESH) self.wait_until_idle() def set_rotate(self, rotate): if (rotate == ROTATE_0): self.rotate = ROTATE_0 self.width = epdif.EPD_WIDTH self.height = epdif.EPD_HEIGHT elif (rotate == ROTATE_90): self.rotate = ROTATE_90 self.width = epdif.EPD_HEIGHT self.height = epdif.EPD_WIDTH elif (rotate == ROTATE_180): self.rotate = ROTATE_180 self.width = epdif.EPD_WIDTH self.height = epdif.EPD_HEIGHT elif (rotate == ROTATE_270): self.rotate = ROTATE_270 self.width = epdif.EPD_HEIGHT self.height = epdif.EPD_WIDTH def set_pixel(self, frame_buffer, x, y, colored): if (x < 0 or x >= self.width or y < 0 or y >= self.height): return if (self.rotate == ROTATE_0): self.set_absolute_pixel(frame_buffer, x, y, colored) elif (self.rotate == ROTATE_90): point_temp = x x = epdif.EPD_WIDTH - y y = point_temp self.set_absolute_pixel(frame_buffer, x, y, colored) elif (self.rotate == ROTATE_180): x = epdif.EPD_WIDTH - x y = epdif.EPD_HEIGHT- y self.set_absolute_pixel(frame_buffer, x, y, colored) elif (self.rotate == ROTATE_270): point_temp = x x = y y = epdif.EPD_HEIGHT - point_temp self.set_absolute_pixel(frame_buffer, x, y, colored) def set_absolute_pixel(self, frame_buffer, x, y, colored): # To avoid display orientation effects # use EPD_WIDTH instead of self.width # use EPD_HEIGHT instead of self.height if (x < 0 or x >= EPD_WIDTH or y < 0 or y >= EPD_HEIGHT): return if (colored): frame_buffer[(x + y * EPD_WIDTH) // 8] &= ~(0x80 >> (x % 8)) else: frame_buffer[(x + y * EPD_WIDTH) // 8] |= 0x80 >> (x % 8) def draw_string_at(self, frame_buffer, x, y, text, font, colored): image = Image.new('1', (self.width, self.height)) draw = ImageDraw.Draw(image) draw.text((x, y), text, font = font, fill = 255) # Set buffer to value of Python Imaging Library image. # Image must be in mode 1. pixels = image.load() for y in range(self.height): for x in range(self.width): # Set the bits for the column of pixels at the current position. if pixels[x, y] != 0: self.set_pixel(frame_buffer, x, y, colored) def draw_line(self, frame_buffer, x0, y0, x1, y1, colored): # Bresenham algorithm dx = abs(x1 - x0) sx = 1 if x0 < x1 else -1 dy = -abs(y1 - y0) sy = 1 if y0 < y1 else -1 err = dx + dy while((x0 != x1) and (y0 != y1)): self.set_pixel(frame_buffer, x0, y0 , colored) if (2 * err >= dy): err += dy x0 += sx if (2 * err <= dx): err += dx y0 += sy def draw_horizontal_line(self, frame_buffer, x, y, width, colored): for i in range(x, x + width): self.set_pixel(frame_buffer, i, y, colored) def draw_vertical_line(self, frame_buffer, x, y, height, colored): for i in range(y, y + height): self.set_pixel(frame_buffer, x, i, colored) def draw_rectangle(self, frame_buffer, x0, y0, x1, y1, colored): min_x = x0 if x1 > x0 else x1 max_x = x1 if x1 > x0 else x0 min_y = y0 if y1 > y0 else y1 max_y = y1 if y1 > y0 else y0 self.draw_horizontal_line(frame_buffer, min_x, min_y, max_x - min_x + 1, colored) self.draw_horizontal_line(frame_buffer, min_x, max_y, max_x - min_x + 1, colored) self.draw_vertical_line(frame_buffer, min_x, min_y, max_y - min_y + 1, colored) self.draw_vertical_line(frame_buffer, max_x, min_y, max_y - min_y + 1, colored) def draw_filled_rectangle(self, frame_buffer, x0, y0, x1, y1, colored): min_x = x0 if x1 > x0 else x1 max_x = x1 if x1 > x0 else x0 min_y = y0 if y1 > y0 else y1 max_y = y1 if y1 > y0 else y0 for i in range(min_x, max_x + 1): self.draw_vertical_line(frame_buffer, i, min_y, max_y - min_y + 1, colored) def draw_circle(self, frame_buffer, x, y, radius, colored): # Bresenham algorithm x_pos = -radius y_pos = 0 err = 2 - 2 * radius if (x >= self.width or y >= self.height): return while True: self.set_pixel(frame_buffer, x - x_pos, y + y_pos, colored) self.set_pixel(frame_buffer, x + x_pos, y + y_pos, colored) self.set_pixel(frame_buffer, x + x_pos, y - y_pos, colored) self.set_pixel(frame_buffer, x - x_pos, y - y_pos, colored) e2 = err if (e2 <= y_pos): y_pos += 1 err += y_pos * 2 + 1 if(-x_pos == y_pos and e2 <= x_pos): e2 = 0 if (e2 > x_pos): x_pos += 1 err += x_pos * 2 + 1 if x_pos > 0: break def draw_filled_circle(self, frame_buffer, x, y, radius, colored): # Bresenham algorithm x_pos = -radius y_pos = 0 err = 2 - 2 * radius if (x >= self.width or y >= self.height): return while True: self.set_pixel(frame_buffer, x - x_pos, y + y_pos, colored) self.set_pixel(frame_buffer, x + x_pos, y + y_pos, colored) self.set_pixel(frame_buffer, x + x_pos, y - y_pos, colored) self.set_pixel(frame_buffer, x - x_pos, y - y_pos, colored) self.draw_horizontal_line(frame_buffer, x + x_pos, y + y_pos, 2 * (-x_pos) + 1, colored) self.draw_horizontal_line(frame_buffer, x + x_pos, y - y_pos, 2 * (-x_pos) + 1, colored) e2 = err if (e2 <= y_pos): y_pos += 1 err += y_pos * 2 + 1 if(-x_pos == y_pos and e2 <= x_pos): e2 = 0 if (e2 > x_pos): x_pos += 1 err += x_pos * 2 + 1 if x_pos > 0: break # to wake call reset() or init() def sleep(self): self._command(VCOM_AND_DATA_INTERVAL_SETTING, b'\x37') self._command(VCM_DC_SETTING_REGISTER, b'\x00') # to solve Vcom drop self._command(POWER_SETTING, b'\x02\x00\x00\x00') # gate switch to external self.wait_until_idle() self._command(POWER_OFF)