Porównaj commity

...

3 Commity

Autor SHA1 Wiadomość Data
Marcus Mendenhall 668b2dedde
Merge aecced4fd9 into 45ead11f96 2024-04-03 14:48:13 +03:00
Damien George 45ead11f96 ssl: Use "from tls import *" to be compatible with axtls.
axtls doesn't define all the CERT_xxx constants, nor the MBEDTLS_VERSION
constant.

This change means that `tls.SSLContext` is imported into the module, but
that's subsequently overridden by the class definition in this module.

Signed-off-by: Damien George <damien@micropython.org>
2024-03-28 17:44:37 +11:00
Marcus Mendenhall aecced4fd9 drivers/sdcard/sdcard.py: Fixes per PR discussion.
Merged crc7.py into sdcard.py, fixed many little things per suggestions.
Removed hardwired crcs from cmd, always recompute.

Signed-off-by: Marcus Mendenhall <mendenmh@gmail.com>
2023-12-21 10:16:24 -05:00
6 zmienionych plików z 424 dodań i 181 usunięć

Wyświetl plik

@ -0,0 +1,111 @@
import micropython
from uctypes import addressof
# ruff: noqa: F821 - @asm_thumb and @viper decorator adds names to function scope
# https://electronics.stackexchange.com/questions/321304/how-to-use-the-data-crc-of-sd-cards-in-spi-mode
# for sd bit mode
import array
_sd_crc16_table = array.array("H", (0 for _ in range(256)))
# /* Generate CRC16 table */
# for (byt = 0U; byt < 256U; byt ++){
# crc = byt << 8;
# for (bit = 0U; bit < 8U; bit ++){
# crc <<= 1;
# if ((crc & 0x10000U) != 0U){ crc ^= 0x1021U; }
# }
# sd_crc16_table[byt] = (crc & 0xFFFFU);
# }
for byt in range(256):
crc = byt << 8
for bit in range(8):
crc = crc << 1
if (crc & 0x10000) != 0:
crc ^= 0x1021
_sd_crc16_table[byt] = crc & 0xFFFF
# /* Running CRC16 calculation for a byte. */
# static unsigned int sd_crc16_byte(unsigned int crcval, unsigned int byte)
# {
# return (sd_crc16_table[(byte ^ (crcval >> 8)) & 0xFFU] ^ (crcval << 8)) & 0xFFFFU;
# }
@micropython.viper
def crc16_viper(crc: int, data) -> int:
dp = ptr8(addressof(data))
tp = ptr16(addressof(_sd_crc16_table))
nn = int(len(data))
idx = 0
while idx < nn:
crc = ((crc << 8) & 0xFFFF) ^ tp[((crc >> 8) ^ dp[idx]) & 0xFF]
idx += 1
return crc
try: # if we have asm_thumb, this goes faster
@micropython.asm_thumb
def _crc_loop_16(r0, r1, r2, r3) -> int:
# r0 is data address
# r1 is table address
# r2 is CRC
# r3 is count
mov(r4, 0)
mvn(r4, r4) # all ones now
mov(r7, 16)
lsr(r4, r7) # R4 = half-word of ones
mov(r5, 0xFF) # used for byte masking
label(loop)
mov(r6, r2) # copy current CRC
mov(r7, 8)
lsr(r6, r7) # crc >> 8
ldrb(r7, [r0, 0]) # fetch new byte dp[idx]
add(r0, 1) # push to next byte address
eor(r6, r7) # r6 = (crc>>8) ^ dp[idx]
and_(r6, r5) # mask byte ( (crc>>8) ^ dp[idx]) & 0xff
add(r6, r6, r6) # double for table offset
add(r6, r6, r1) # table data address
ldrh(r6, [r6, 0]) # fetch table syndrome
mov(r7, 8)
lsl(r2, r7) # CRC << 8
and_(r2, r4) # (crc << 8) & 0xffff)
eor(r2, r6) # new CRC
sub(r3, 1)
bne(loop)
mov(r0, r2)
@micropython.viper
def crc16(crc: int, data) -> int:
return int(
_crc_loop_16(
int(addressof(data)),
int(addressof(_sd_crc16_table)),
crc,
int(len(data)),
)
)
except:
# wrapper to allow the pure-python implementation to be accessed by the right name if asm_thumb doesn't work
@micropython.viper
def crc16(crc: int, data) -> int:
return int(crc16_viper(crc, data))
# def test_speed():
# data = b"\xaa"*1024
# import time
# crc = 0
# start = time.ticks_us()
# for i in range(1024):
# crc = crc16(crc, data)
# print("asm crc speed = ", f"{crc:08x}", 2**20 / (time.ticks_diff(time.ticks_us(), start) / 1e6), "bytes/s")
#
# crc = 0
# start = time.ticks_us()
# for i in range(1024):
# crc = crc16_viper(crc, data)
# print("py crc speed = ", f"{crc:08x}", 2**20 / (time.ticks_diff(time.ticks_us(), start) / 1e6), "bytes/s")

Wyświetl plik

@ -1,3 +1,3 @@
metadata(description="SDCard block device driver.", version="0.1.0")
metadata(description="SDCard block device driver.", version="0.2.0")
module("sdcard.py", opt=3)

Wyświetl plik

@ -0,0 +1,101 @@
# SD card setup
from machine import SPI, Pin, freq
freq(120_000_000)
print("freq:", freq())
import os
from sdcard import SDCard
import time
# the bus spi1 on these pins on my test card
# I have cs on GP13 for this one
spi = SPI(1, 24_000_000, sck=Pin(14), mosi=Pin(15), miso=Pin(12))
spi.init() # Ensure right baudrate
from crc16 import crc16
sd = SDCard(spi=spi, cs=Pin(13, Pin.OUT), baudrate=24_000_000, crc16_function=None)
vfs = os.VfsFat(sd)
os.mount(vfs, "/fc")
def sdtest():
print("Filesystem check")
print(os.listdir("/fc"))
line = "abcdefghijklmnopqrstuvwxyz\n"
lines = line * 200 # 5400 chars
short = "1234567890\n"
fn = "/fc/rats.txt"
print()
print("Multiple block read/write")
loops = 1000
t0 = time.ticks_ms()
with open(fn, "w") as f:
n = f.write(lines)
print(n, "bytes written")
n = f.write(short)
print(n, "bytes written")
for i in range(loops):
n = f.write(lines)
nbytes = loops * len(lines) + len(lines) + len(short)
rate = 1000 * nbytes / time.ticks_diff(time.ticks_ms(), t0)
print(nbytes, "bytes written at ", rate / 1e6, "MB/s")
stat = os.stat(fn)
filesize = stat[6]
total = 0
t0 = time.ticks_ms()
readbuf = bytearray(8192)
import uctypes
with open(fn, "rb") as f:
f.readinto(readbuf)
big_readback = readbuf[: len(lines)] # check a big chunk of data
with open(fn, "rb") as f:
while (count := f.readinto(readbuf)) != 0:
total += count
rate = 1000 * total / time.ticks_diff(time.ticks_ms(), t0)
print("final file size", filesize, "expected", nbytes, "read", total, "rate=", rate / 1e6)
fn = "/fc/rats1.txt"
print()
print("Single block read/write")
with open(fn, "w") as f:
n = f.write(short) # one block
print(n, "bytes written")
with open(fn, "r") as f:
result2 = f.read()
print(len(result2), "bytes read")
print()
print("Verifying data read back")
success = True
if result2 == short:
print("Small file Pass")
else:
print("Small file Fail")
success = False
if big_readback == lines:
print("Big read Pass")
else:
print("Big readFail")
success = False
print()
print("Tests", "passed" if success else "failed")
sdtest()
os.umount("/fc")

Wyświetl plik

@ -1,57 +1,96 @@
"""
MicroPython driver for SD cards using SPI bus.
Requires an SPI bus and a CS pin. Provides readblocks and writeblocks
methods so the device can be mounted as a filesystem.
Example usage on pyboard:
import pyb, sdcard, os
sd = sdcard.SDCard(pyb.SPI(1), pyb.Pin.board.X5)
pyb.mount(sd, '/sd2')
os.listdir('/')
Example usage on ESP8266:
import machine, sdcard, os
sd = sdcard.SDCard(machine.SPI(1), machine.Pin(15))
os.mount(sd, '/sd')
os.listdir('/')
"""
#
# MicroPython driver for SD cards using SPI bus.
#
# Requires an SPI bus and a CS pin. Provides readblocks and writeblocks
# methods so the device can be mounted as a filesystem.
#
# Example usage on pyboard:
#
# import pyb, sdcard, os
# sd = sdcard.SDCard(pyb.SPI(1), pyb.Pin.board.X5)
# pyb.mount(sd, '/sd2')
# os.listdir('/')
#
# Example usage on ESP8266:
#
# import machine, sdcard, os
# sd = sdcard.SDCard(machine.SPI(1), machine.Pin(15))
# os.mount(sd, '/sd')
# os.listdir('/')
#
# Note about the crc_function:
# this is crc(seed: int, buf: buffer) -> int
# If no crc16 function is provided, CRCs are not computed on data transfers.
# If a crc16 is provided, the CRC function of the SD card is enabled,
# and data transfers both ways are protected by it
#
import micropython
from micropython import const
import time
import uctypes
from errno import ETIMEDOUT, EIO, ENODEV, EINVAL
crc7_be_syndrome_table = (
b"\x00\x12$6HZl~\x90\x82\xb4\xa6\xd8\xca\xfc\xee2 \x16\x04zh^L\xa2\xb0\x86\x94\xea\xf8"
b"\xce\xdcdv@R,>\x08\x1a\xf4\xe6\xd0\xc2\xbc\xae\x98\x8aVDr`\x1e\x0c:(\xc6\xd4\xe2\xf0"
b"\x8e\x9c\xaa\xb8\xc8\xda\xec\xfe\x80\x92\xa4\xb6XJ|n\x10\x024&\xfa\xe8\xde\xcc\xb2\xa0"
b'\x96\x84jxN\\"0\x06\x14\xac\xbe\x88\x9a\xe4\xf6\xc0\xd2<.\x18\ntfPB\x9e\x8c\xba\xa8'
b"\xd6\xc4\xf2\xe0\x0e\x1c*8FTbp\x82\x90\xa6\xb4\xca\xd8\xee\xfc\x12\x006$ZH~l\xb0\xa2"
b"\x94\x86\xf8\xea\xdc\xce 2\x04\x16hzL^\xe6\xf4\xc2\xd0\xae\xbc\x8a\x98vdR@>,\x1a\x08"
b"\xd4\xc6\xf0\xe2\x9c\x8e\xb8\xaaDV`r\x0c\x1e(:JXn|\x02\x10&4\xda\xc8\xfe\xec\x92\x80"
b'\xb6\xa4xj\\N0"\x14\x06\xe8\xfa\xcc\xde\xa0\xb2\x84\x96.<\n\x18ftBP\xbe\xac\x9a\x88\xf6'
b"\xe4\xd2\xc0\x1c\x0e8*TFpb\x8c\x9e\xa8\xba\xc4\xd6\xe0\xf2"
)
_CMD_TIMEOUT = const(100)
def crc7(buf) -> int:
crc = 0
for b in buf:
crc = crc7_be_syndrome_table[crc ^ b]
return crc
def gb(bigval, b0, bn):
# get numbered bits from a buf_to_int from, for example, the CSD
return (bigval >> b0) & ((1 << (1 + bn - b0)) - 1)
_CMD_TIMEOUT = const(50)
_R1_IDLE_STATE = const(1 << 0)
# R1_ERASE_RESET = const(1 << 1)
_R1_ILLEGAL_COMMAND = const(1 << 2)
# R1_COM_CRC_ERROR = const(1 << 3)
_R1_COM_CRC_ERROR = const(1 << 3)
# R1_ERASE_SEQUENCE_ERROR = const(1 << 4)
# R1_ADDRESS_ERROR = const(1 << 5)
# R1_PARAMETER_ERROR = const(1 << 6)
_TOKEN_CMD25 = const(0xFC)
_TOKEN_STOP_TRAN = const(0xFD)
_TOKEN_DATA = const(0xFE)
_HCS_BIT = const(1 << 30) # for ACMD41
class SDCard:
def __init__(self, spi, cs, baudrate=1320000):
def __init__(self, spi, cs, baudrate=1320000, crc16_function=None):
self.spi = spi
self.cs = cs
self.cmdbuf = bytearray(6)
self.dummybuf = bytearray(512)
self.cmdbuf5 = memoryview(self.cmdbuf)[:5] # for crc7 generation
self.tokenbuf = bytearray(1)
for i in range(512):
self.dummybuf[i] = 0xFF
self.dummybuf_memoryview = memoryview(self.dummybuf)
self.crcbuf = bytearray(2)
self.crc16 = None # during init
# initialise the card
self.init_card(baudrate)
self.check_crcs(crc16_function) # now set it up
def check_crcs(self, crc16_function):
self.crc16 = crc16_function
result = self.cmd(
59, 1 if crc16_function else 0, release=True
) # send CRC enable/disable command
return result
def init_spi(self, baudrate):
try:
@ -63,6 +102,9 @@ class SDCard:
# on pyboard
self.spi.init(master, baudrate=baudrate, phase=0, polarity=0)
def _spiff(self):
self.spi.write(b"\xff")
def init_card(self, baudrate):
# init CS pin
self.cs.init(self.cs.OUT, value=1)
@ -70,82 +112,74 @@ class SDCard:
# init SPI bus; use low data rate for initialisation
self.init_spi(100000)
# clock card at least 100 cycles with cs high
for i in range(16):
self.spi.write(b"\xff")
# clock card at least 100 cycles with cs high (16 bytes = 128 cycles)
# use explicit string here for small memory footprint
self.spi.write(b"\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff")
# CMD0: init card; should return _R1_IDLE_STATE (allow 5 attempts)
for _ in range(5):
if self.cmd(0, 0, 0x95) == _R1_IDLE_STATE:
break
else:
raise OSError("no SD card")
raise OSError(ENODEV, "no SD card")
# CMD8: determine card version
r = self.cmd(8, 0x01AA, 0x87, 4)
if r == _R1_IDLE_STATE:
self.init_card_v2()
elif r == (_R1_IDLE_STATE | _R1_ILLEGAL_COMMAND):
self.init_card_v1()
else:
raise OSError("couldn't determine SD card version")
r = self.cmd(8, 0x01AA, 4) # probe version
v2 = r == _R1_IDLE_STATE
v1 = r == (_R1_IDLE_STATE | _R1_ILLEGAL_COMMAND)
if not (v1 or v2):
raise OSError(EIO, "couldn't determine SD card version")
arg41 = _HCS_BIT if v2 else 0 # we support high capacity, on v2 cards
for i in range(_CMD_TIMEOUT): # loop on acmd41 to get
self.cmd(55, 0)
if (r := self.cmd(41, arg41)) == 0:
break
time.sleep_ms(5)
if r != 0:
raise OSError(ETIMEDOUT, "card type", "v2" if v2 else "v1")
# get the number of sectors
# CMD9: response R2 (R1 byte + 16-byte block read)
if self.cmd(9, 0, 0, 0, False) != 0:
raise OSError("no response from SD card")
if self.cmd(9, 0, 0, False) != 0:
raise OSError(EIO, "no CSD response")
csd = bytearray(16)
self.readinto(csd)
if csd[0] & 0xC0 == 0x40: # CSD version 2.0
self.sectors = ((csd[8] << 8 | csd[9]) + 1) * 1024
elif csd[0] & 0xC0 == 0x00: # CSD version 1.0 (old, <=2GB)
c_size = (csd[6] & 0b11) << 10 | csd[7] << 2 | csd[8] >> 6
c_size_mult = (csd[9] & 0b11) << 1 | csd[10] >> 7
read_bl_len = csd[5] & 0b1111
self.CSD = csd_int = int.from_bytes(
csd, "big"
) # convert 16-byte CSD to a giant integer for bit extraction
_gb = gb # just for local binding
# use bit numbers from SD card spec v9.0.0, table 5.3.2
vers = _gb(csd_int, 126, 127)
if vers == 1: # CSD version 2.0
self.sectors = (_gb(csd_int, 48, 69) + 1) * 1024
self.cdv = 1
elif vers == 0x00: # CSD version 1.0 (old, <=2GB)
c_size = _gb(csd_int, 62, 73)
c_size_mult = _gb(csd_int, 47, 49)
read_bl_len = _gb(csd_int, 80, 83)
capacity = (c_size + 1) * (2 ** (c_size_mult + 2)) * (2**read_bl_len)
self.sectors = capacity // 512
self.cdv = 512 # converts bytes to sectors
else:
raise OSError("SD card CSD format not supported")
raise OSError(EIO, "CSD format unknown")
# print('sectors', self.sectors)
# CMD16: set block length to 512 bytes
if self.cmd(16, 512, 0) != 0:
raise OSError("can't set 512 block size")
if self.cmd(16, 512) != 0:
raise OSError(EIO, "can't set 512 block size")
# set to high data rate now that it's initialised
self.init_spi(baudrate)
def init_card_v1(self):
for i in range(_CMD_TIMEOUT):
time.sleep_ms(50)
self.cmd(55, 0, 0)
if self.cmd(41, 0, 0) == 0:
# SDSC card, uses byte addressing in read/write/erase commands
self.cdv = 512
# print("[SDCard] v1 card")
return
raise OSError("timeout waiting for v1 card")
def cmd(self, cmd, arg, final=0, release=True, skip1=False):
cs = self.cs # prebind
w = self.spi.write
r = self.spi.readinto
tb = self.tokenbuf
spiff = self._spiff
def init_card_v2(self):
for i in range(_CMD_TIMEOUT):
time.sleep_ms(50)
self.cmd(58, 0, 0, 4)
self.cmd(55, 0, 0)
if self.cmd(41, 0x40000000, 0) == 0:
self.cmd(58, 0, 0, -4) # 4-byte response, negative means keep the first byte
ocr = self.tokenbuf[0] # get first byte of response, which is OCR
if not ocr & 0x40:
# SDSC card, uses byte addressing in read/write/erase commands
self.cdv = 512
else:
# SDHC/SDXC card, uses block addressing in read/write/erase commands
self.cdv = 1
# print("[SDCard] v2 card")
return
raise OSError("timeout waiting for v2 card")
def cmd(self, cmd, arg, crc, final=0, release=True, skip1=False):
self.cs(0)
cs(0) # select chip
# create and send the command
buf = self.cmdbuf
@ -154,150 +188,154 @@ class SDCard:
buf[2] = arg >> 16
buf[3] = arg >> 8
buf[4] = arg
buf[5] = crc
self.spi.write(buf)
buf[5] = crc7(self.cmdbuf5) | 1
w(buf)
if skip1:
self.spi.readinto(self.tokenbuf, 0xFF)
r(tb, 0xFF)
# wait for the response (response[7] == 0)
for i in range(_CMD_TIMEOUT):
self.spi.readinto(self.tokenbuf, 0xFF)
response = self.tokenbuf[0]
r(tb, 0xFF)
response = tb[0]
# print(f"response: {response:02x}")
if not (response & 0x80):
# this could be a big-endian integer that we are getting here
# if final<0 then store the first byte to tokenbuf and discard the rest
if response & _R1_COM_CRC_ERROR:
cs(1)
spiff()
raise OSError(EIO, f"CRC err on cmd: {cmd:02d}")
if final < 0:
self.spi.readinto(self.tokenbuf, 0xFF)
r(tb, 0xFF)
final = -1 - final
for j in range(final):
self.spi.write(b"\xff")
spiff()
if release:
self.cs(1)
self.spi.write(b"\xff")
cs(1)
spiff()
return response
else:
if i > (_CMD_TIMEOUT // 2):
time.sleep_ms(1) # very slow response, give it time
# timeout
self.cs(1)
self.spi.write(b"\xff")
return -1
cs(1)
spiff()
raise OSError(ETIMEDOUT, "command:", cmd, "arg:", arg)
def readinto(self, buf):
self.cs(0)
cs = self.cs
spiff = self._spiff
cs(0)
# read until start byte (0xff)
for i in range(_CMD_TIMEOUT):
self.spi.readinto(self.tokenbuf, 0xFF)
if self.tokenbuf[0] == _TOKEN_DATA:
break
time.sleep_ms(1)
else:
self.cs(1)
raise OSError("timeout waiting for response")
if i > _CMD_TIMEOUT // 2:
time.sleep_ms(1) # if response is slow, wait longer
# read data
mv = self.dummybuf_memoryview
if len(buf) != len(mv):
mv = mv[: len(buf)]
self.spi.write_readinto(mv, buf)
else:
cs(1)
raise OSError(ETIMEDOUT, "read timeout")
self.spi.readinto(buf, 0xFF)
# read checksum
self.spi.write(b"\xff")
self.spi.write(b"\xff")
ck = self.spi.read(2, 0xFF)
if self.crc16:
crc = self.crc16(self.crc16(0, buf), ck)
if crc != 0:
raise OSError(EIO, f"bad data CRC: {crc:04x}")
self.cs(1)
self.spi.write(b"\xff")
cs(1)
spiff()
def write(self, token, buf):
self.cs(0)
cs = self.cs
spiff = self._spiff
r = self.spi.read
w = self.spi.write
cs(0)
# send: start of block, data, checksum
self.spi.read(1, token)
self.spi.write(buf)
self.spi.write(b"\xff")
self.spi.write(b"\xff")
# check the response
if (self.spi.read(1, 0xFF)[0] & 0x1F) != 0x05:
self.cs(1)
self.spi.write(b"\xff")
return
r(1, token)
w(buf)
if self.crc16:
crc = self.crc16(0, buf)
self.crcbuf[0] = crc >> 8
self.crcbuf[1] = crc & 0xFF
w(self.crcbuf) # write checksum
else:
w(b"\xff\xff")
# check the response
if ((r(1, 0xFF)[0]) & 0x1F) != 0x05:
cs(1)
spiff()
raise OSError(EIO, "write fail")
# wait for write to finish
while self.spi.read(1, 0xFF)[0] == 0:
while (r(1, 0xFF)[0]) == 0:
pass
self.cs(1)
self.spi.write(b"\xff")
cs(1)
spiff()
def write_token(self, token):
self.cs(0)
self.spi.read(1, token)
self.spi.write(b"\xff")
self._spiff()
# wait for write to finish
while self.spi.read(1, 0xFF)[0] == 0x00:
pass
self.cs(1)
self.spi.write(b"\xff")
self._spiff()
@staticmethod
def blocks(buf):
nblocks, err = divmod(len(buf), 512)
if not nblocks or err:
raise OSError(EINVAL, "Buffer length is invalid")
return nblocks
def readblocks(self, block_num, buf):
# workaround for shared bus, required for (at least) some Kingston
# devices, ensure MOSI is high before starting transaction
self.spi.write(b"\xff")
self._spiff()
nblocks = self.blocks(buf)
nblocks = len(buf) // 512
assert nblocks and not len(buf) % 512, "Buffer length is invalid"
if nblocks == 1:
# CMD17: set read address for single block
if self.cmd(17, block_num * self.cdv, 0, release=False) != 0:
# release the card
self.cs(1)
raise OSError(5) # EIO
# receive the data and release card
self.readinto(buf)
else:
# CMD18: set read address for multiple blocks
if self.cmd(18, block_num * self.cdv, 0, release=False) != 0:
# release the card
self.cs(1)
raise OSError(5) # EIO
offset = 0
mv = memoryview(buf)
while nblocks:
# receive the data and release card
self.readinto(mv[offset : offset + 512])
offset += 512
nblocks -= 1
if self.cmd(12, 0, 0xFF, skip1=True):
raise OSError(5) # EIO
# CMD18: set read address for multiple blocks
if self.cmd(18, block_num * self.cdv, release=False) != 0:
# release the card
self.cs(1)
raise OSError(EIO) # EIO
mv = memoryview(buf)
for offset in range(0, nblocks * 512, 512):
self.readinto(mv[offset : offset + 512])
if self.cmd(12, 0, skip1=True):
raise OSError(EIO) # EIO
def writeblocks(self, block_num, buf):
# workaround for shared bus, required for (at least) some Kingston
# devices, ensure MOSI is high before starting transaction
self.spi.write(b"\xff")
self._spiff()
nblocks = self.blocks(buf)
nblocks, err = divmod(len(buf), 512)
assert nblocks and not err, "Buffer length is invalid"
if nblocks == 1:
# CMD24: set write address for single block
if self.cmd(24, block_num * self.cdv, 0) != 0:
raise OSError(5) # EIO
# send the data
self.write(_TOKEN_DATA, buf)
else:
# CMD25: set write address for first block
if self.cmd(25, block_num * self.cdv, 0) != 0:
raise OSError(5) # EIO
# send the data
offset = 0
mv = memoryview(buf)
while nblocks:
self.write(_TOKEN_CMD25, mv[offset : offset + 512])
offset += 512
nblocks -= 1
self.write_token(_TOKEN_STOP_TRAN)
# CMD25: set write address for first block
if self.cmd(25, block_num * self.cdv) != 0:
raise OSError(EIO) # EIO`
# send the data
mv = memoryview(buf)
for offset in range(0, nblocks * 512, 512):
self.write(_TOKEN_CMD25, mv[offset : offset + 512])
self.write_token(_TOKEN_STOP_TRAN)
def ioctl(self, op, arg):
if op == 4: # get number of blocks

Wyświetl plik

@ -1,3 +1,3 @@
metadata(version="0.2.0")
metadata(version="0.2.1")
module("ssl.py", opt=3)

Wyświetl plik

@ -1,12 +1,5 @@
import tls
from tls import (
CERT_NONE,
CERT_OPTIONAL,
CERT_REQUIRED,
MBEDTLS_VERSION,
PROTOCOL_TLS_CLIENT,
PROTOCOL_TLS_SERVER,
)
from tls import *
class SSLContext: