updated for gnss

pull/22/head
Kent Wiliams 2020-05-19 10:27:53 -07:00
rodzic cec8c87e71
commit edd9a26a35
2 zmienionych plików z 547 dodań i 0 usunięć

Wyświetl plik

@ -0,0 +1,40 @@
# ST B-L072Z-LRWAN1 - GNSS Example
This example demonstrates sending GNSS data in [CayenneLPP](https://developers.mydevices.com/cayenne/docs/lora/#lora-cayenne-low-power-payload) format, using a B-L072Z-LRWAN1 development board with a X-NUCLEO-GNSS1A1 expansion shield, to the myDevices Cayenne dashboard. For more information on adding your device to the Helium network, visit our quickstart guide [here](https://developer.helium.com/console/quickstart). For more information on adding your device to myDevices Cayenne, visit our guide [here](https://developer.helium.com/console/integrations/mydevices-cayenne-integration).
## Required Arduino Libraries
From the Arduino IDE, open the Library Manager (Sketch->Include Library->Manage Libraries). In the search box, type the library name below and install the latest version.
[MCCI Arduino LoRaWAN Library](https://github.com/mcci-catena/arduino-lmic)
[CayenneLPP](https://github.com/ElectronicCats/CayenneLPP)
[X-NUCLEO-GNSS1A1](https://github.com/stm32duino/X-NUCLEO-GNSS1A1)
## Required Arduino Board Support
### B-L072Z-LRWAN1 - ST STM32L0 Discovery kit
Install board support package, find instructions [here](https://github.com/stm32duino/Arduino_Core_STM32#getting-started).
Arduino IDE:
1. Select Tools -> Board: -> Discovery
2. Select Tools -> Board part number: -> Discovery L072Z-LRWAN1
## Required Hardware
### B-L072Z-LRWAN1 - ST STM32L0 Discovery kit
[B-L072Z-LRWAN1 Product Page](https://www.st.com/en/evaluation-tools/b-l072z-lrwan1.html)
[B-L072Z-LRWAN1 User Manual](https://www.st.com/content/ccc/resource/technical/document/user_manual/group0/ac/62/15/c7/60/ac/4e/9c/DM00329995/files/DM00329995.pdf/jcr:content/translations/en.DM00329995.pdf)
### X-NUCLEO-IKS01A3 - ST Motion MEMS and Environmental Sensor Board
[X-NUCLEO-IKS01A3 Product Page](https://www.st.com/en/ecosystems/x-nucleo-iks01a3.html)
[X-NUCLEO-IKS01A3 User Manual](https://www.st.com/resource/en/user_manual/dm00601501-getting-started-with-the-xnucleoiks01a3-motion-mems-and-environmental-sensor-expansion-board-for-stm32-nucleo-stmicroelectronics.pdf)
## Programming (Uploading Method):
#### STM32CubeProgrammer(SWD)
Will use onboard ST-Link(Flasher/Debugger) to upload sketch.
Download and Install required utility from ST [here](https://www.st.com/en/development-tools/stm32cubeprog.html).
Arduino IDE:
Select Tools -> Upload Method -> STM32CubeProgrammer(SWD)

Wyświetl plik

@ -0,0 +1,507 @@
/*******************************************************************************
* Copyright (c) 2015 Thomas Telkamp and Matthijs Kooijman
* Copyright (c) 2018 Terry Moore, MCCI
*
* Permission is hereby granted, free of charge, to anyone
* obtaining a copy of this document and accompanying files,
* to do whatever they want with them without any restriction,
* including, but not limited to, copying, modification and redistribution.
* NO WARRANTY OF ANY KIND IS PROVIDED.
*
* This example sends a valid LoRaWAN packet with payload "Hello,
* world!", using frequency and encryption settings matching those of
* the The Things Network. It's pre-configured for the Adafruit
* Feather M0 LoRa.
*
*******************************************************************************/
/*******************************************************************************
*
* For Helium developers, follow the Arduino Quickstart guide:
* https://developer.helium.com/device/arduino-quickstart
* TLDR: register your device on the Serial:
* https://Serial.helium.com/devices
*
* The App EUI (as lsb) and App Key (as msb) get inserted below.
*
*******************************************************************************/
#include <SPI.h>
#include <arduino_lmic.h>
#include <arduino_lmic_hal_boards.h>
#include <arduino_lmic_hal_configuration.h>
#include <arduino_lmic_lorawan_compliance.h>
#include <arduino_lmic_user_configuration.h>
#include <hal/hal.h>
#include <lmic.h>
#include <MicroNMEA.h>
#include <Wire.h>
#include <CayenneLPP.h>
//I2C communication parameters
#define DEFAULT_DEVICE_ADDRESS 0x3A
#define DEFAULT_DEVICE_PORT 0xFF
#define I2C_DELAY 1
#define RESET_PIN 7
#define DEV_I2C Wire
// This is the "App EUI" in Helium. Make sure it is little-endian (lsb).
static const u1_t PROGMEM APPEUI[8] = {0};
void os_getArtEui(u1_t *buf) { memcpy_P(buf, APPEUI, 8); }
// This should also be in little endian format
// These are user configurable values and Helium Serial permits anything
static const u1_t PROGMEM DEVEUI[8] = {0};
void os_getDevEui(u1_t *buf) { memcpy_P(buf, DEVEUI, 8); }
// This is the "App Key" in Helium. It is big-endian (msb).
static const u1_t PROGMEM APPKEY[16] = {0};
void os_getDevKey(u1_t *buf) { memcpy_P(buf, APPKEY, 16); }
CayenneLPP lpp(51);
TwoWire& gps = DEV_I2C;
//I2C read data structures
char buff[32];
int idx = 0;
char nmeaBuffer[100];
MicroNMEA nmea(nmeaBuffer, sizeof(nmeaBuffer));
bool ledState = LOW;
volatile bool ppsTriggered = false;
void ppsHandler(void);
static osjob_t sendjob;
void do_send(osjob_t *j);
// Schedule TX every this many seconds (might become longer due to duty
// cycle limitations).
const unsigned TX_INTERVAL = 60;
// Pin mapping
//
// Adafruit BSPs are not consistent -- m0 express defs ARDUINO_SAMD_FEATHER_M0,
// m0 defs ADAFRUIT_FEATHER_M0
//
#if defined(ARDUINO_SAMD_FEATHER_M0) || defined(ADAFRUIT_FEATHER_M0)
// Pin mapping for Adafruit Feather M0 LoRa, etc.
const lmic_pinmap lmic_pins = {
.nss = 8,
.rxtx = LMIC_UNUSED_PIN,
.rst = 4,
.dio = {3, 6, LMIC_UNUSED_PIN},
.rxtx_rx_active = 0,
.rssi_cal = 8, // LBT cal for the Adafruit Feather M0 LoRa, in dB
.spi_freq = 8000000,
};
#elif defined(ARDUINO_AVR_FEATHER32U4)
// Pin mapping for Adafruit Feather 32u4 LoRa, etc.
// Just like Feather M0 LoRa, but uses SPI at 1MHz; and that's only
// because MCCI doesn't have a test board; probably higher frequencies
// will work.
const lmic_pinmap lmic_pins = {
.nss = 8,
.rxtx = LMIC_UNUSED_PIN,
.rst = 4,
.dio = {7, 6, LMIC_UNUSED_PIN},
.rxtx_rx_active = 0,
.rssi_cal = 8, // LBT cal for the Adafruit Feather 32U4 LoRa, in dB
.spi_freq = 1000000,
};
#elif defined(ARDUINO_CATENA_4551)
// Pin mapping for Murata module / Catena 4551
const lmic_pinmap lmic_pins = {
.nss = 7,
.rxtx = 29,
.rst = 8,
.dio =
{
25, // DIO0 (IRQ) is D25
26, // DIO1 is D26
27, // DIO2 is D27
},
.rxtx_rx_active = 1,
.rssi_cal = 10,
.spi_freq = 8000000 // 8MHz
};
#elif defined(MCCI_CATENA_4610)
#include "arduino_lmic_hal_boards.h"
const lmic_pinmap lmic_pins = *Arduino_LMIC::GetPinmap_Catena4610();
#elif defined(ARDUINO_DISCO_L072CZ_LRWAN1)
const lmic_pinmap lmic_pins = *Arduino_LMIC::GetPinmap_Disco_L072cz_Lrwan1();
#else
#error "Unknown target"
#endif
void ppsHandler(void)
{
ppsTriggered = true;
}
void gpsHardwareReset()
{
//reset the device
digitalWrite(RESET_PIN, LOW);
delay(50);
digitalWrite(RESET_PIN, HIGH);
//wait for reset to apply
delay(2000);
}
//Read 32 bytes from I2C
void readI2C(char *inBuff)
{
gps.beginTransmission(DEFAULT_DEVICE_ADDRESS);
gps.write((uint8_t) DEFAULT_DEVICE_PORT);
gps.endTransmission(false);
gps.requestFrom((uint8_t)DEFAULT_DEVICE_ADDRESS, (uint8_t) 32);
int i = 0;
while (gps.available())
{
inBuff[i]= gps.read();
i++;
}
}
//Send a NMEA command via I2C
void sendCommand(char *cmd)
{
gps.beginTransmission(DEFAULT_DEVICE_ADDRESS);
gps.write((uint8_t) DEFAULT_DEVICE_PORT);
MicroNMEA::sendSentence(gps, cmd);
gps.endTransmission(true);
}
void onEvent(ev_t ev) {
Serial.print(os_getTime());
Serial.print(": ");
switch (ev) {
case EV_SCAN_TIMEOUT:
Serial.println(F("EV_SCAN_TIMEOUT"));
break;
case EV_BEACON_FOUND:
Serial.println(F("EV_BEACON_FOUND"));
break;
case EV_BEACON_MISSED:
Serial.println(F("EV_BEACON_MISSED"));
break;
case EV_BEACON_TRACKED:
Serial.println(F("EV_BEACON_TRACKED"));
break;
case EV_JOINING:
Serial.println(F("EV_JOINING"));
break;
case EV_JOIN_TXCOMPLETE:
Serial.println(F("EV_JOIN_TXCOMPLETE"));
break;
case EV_JOINED:
Serial.println(F("EV_JOINED"));
{
u4_t netid = 0;
devaddr_t devaddr = 0;
u1_t nwkKey[16];
u1_t artKey[16];
LMIC_getSessionKeys(&netid, &devaddr, nwkKey, artKey);
Serial.print("netid: ");
Serial.println(netid, DEC);
Serial.print("devaddr: ");
Serial.println(devaddr, HEX);
Serial.print("artKey: ");
for (size_t i = 0; i < sizeof(artKey); ++i) {
if (i != 0)
Serial.print("-");
Serial.print(artKey[i], HEX);
}
Serial.println("");
Serial.print("nwkKey: ");
for (size_t i = 0; i < sizeof(nwkKey); ++i) {
if (i != 0)
Serial.print("-");
Serial.print(nwkKey[i], HEX);
}
Serial.println("");
}
// Disable link check validation (automatically enabled
// during join, but because slow data rates change max TX
// size, we don't use it in this example.
LMIC_setLinkCheckMode(0);
break;
/*
|| This event is defined but not used in the code. No
|| point in wasting codespace on it.
||
|| case EV_RFU1:
|| Serial.println(F("EV_RFU1"));
|| break;
*/
case EV_JOIN_FAILED:
Serial.println(F("EV_JOIN_FAILED"));
break;
case EV_REJOIN_FAILED:
Serial.println(F("EV_REJOIN_FAILED"));
break;
break;
case EV_TXCOMPLETE:
Serial.println(F("EV_TXCOMPLETE (includes waiting for RX windows)"));
if (LMIC.txrxFlags & TXRX_ACK)
Serial.println(F("Received ack"));
if (LMIC.dataLen) {
Serial.println(F("Received "));
Serial.println(LMIC.dataLen);
Serial.println(F(" bytes of payload"));
}
// Schedule next transmission
os_setTimedCallback(&sendjob, os_getTime() + sec2osticks(TX_INTERVAL),
do_send);
break;
case EV_LOST_TSYNC:
Serial.println(F("EV_LOST_TSYNC"));
break;
case EV_RESET:
Serial.println(F("EV_RESET"));
break;
case EV_RXCOMPLETE:
// data received in ping slot
Serial.println(F("EV_RXCOMPLETE"));
break;
case EV_LINK_DEAD:
Serial.println(F("EV_LINK_DEAD"));
break;
case EV_LINK_ALIVE:
Serial.println(F("EV_LINK_ALIVE"));
break;
/*
|| This event is defined but not used in the code. No
|| point in wasting codespace on it.
||
|| case EV_SCAN_FOUND:
|| Serial.println(F("EV_SCAN_FOUND"));
|| break;
*/
case EV_TXSTART:
Serial.println(F("EV_TXSTART"));
break;
default:
Serial.print(F("Unknown event: "));
Serial.println((unsigned)ev);
break;
}
}
void readGPS() {
//If a message is recieved print all the informations
if (ppsTriggered)
{
ppsTriggered = false;
ledState = !ledState;
digitalWrite(LED_BUILTIN, ledState);
// Output GPS information from previous second
Serial.print("Valid fix: ");
Serial.println(nmea.isValid() ? "yes" : "no");
Serial.print("Nav. system: ");
if (nmea.getNavSystem())
Serial.println(nmea.getNavSystem());
else
Serial.println("none");
Serial.print("Num. satellites: ");
Serial.println(nmea.getNumSatellites());
Serial.print("HDOP: ");
Serial.println(nmea.getHDOP()/10., 1);
Serial.print("Date/time: ");
Serial.print(nmea.getYear());
Serial.print('-');
Serial.print(int(nmea.getMonth()));
Serial.print('-');
Serial.print(int(nmea.getDay()));
Serial.print('T');
Serial.print(int(nmea.getHour()));
Serial.print(':');
Serial.print(int(nmea.getMinute()));
Serial.print(':');
Serial.println(int(nmea.getSecond()));
long latitude_mdeg = nmea.getLatitude();
long longitude_mdeg = nmea.getLongitude();
Serial.print("Latitude (deg): ");
Serial.println(latitude_mdeg / 1000000., 6);
Serial.print("Longitude (deg): ");
Serial.println(longitude_mdeg / 1000000., 6);
long alt;
Serial.print("Altitude (m): ");
if (nmea.getAltitude(alt))
Serial.println(alt / 1000., 3);
else
Serial.println("not available");
Serial.print("Speed: ");
Serial.println(nmea.getSpeed() / 1000., 3);
Serial.print("Course: ");
Serial.println(nmea.getCourse() / 1000., 3);
Serial.println("-----------------------");
nmea.clear();
}
else
{
char c ;
if (idx == 0)
{
readI2C(buff);
delay(I2C_DELAY);
}
//Fetch the character one by one
c = buff[idx];
idx++;
idx %= 32;
//If we have a valid character pass it to the library
if ((uint8_t) c != 0xFF)
{
Serial.print(c);
nmea.process(c);
}
}
}
void do_send(osjob_t *j) {
// Check if there is not a current TX/RX job running
if (LMIC.opmode & OP_TXRXPEND) {
Serial.println(F("OP_TXRXPEND, not sending"));
} else {
// Prepare upstream data transmission at the next possible time.
LMIC_setTxData2(1, lpp.getBuffer(), lpp.getSize(), 0);
Serial.println(F("Packet queued"));
}
// Next TX is scheduled after TX_COMPLETE event.
}
void setup() {
delay(2000);
while (!Serial)
;
Serial.begin(9600);
Serial.println(F("Starting"));
// Start GPS Setup
gps.begin();
pinMode(LED_BUILTIN, OUTPUT);
digitalWrite(LED_BUILTIN, ledState);
//Start the module
pinMode(RESET_PIN, OUTPUT);
digitalWrite(RESET_PIN, HIGH);
Serial.println("Resetting GPS module ...");
gpsHardwareReset();
Serial.println("... done");
// Change the echoing messages to the ones recognized by the MicroNMEA library
sendCommand((char *)"$PSTMSETPAR,1231,0x00000042");
sendCommand((char *)"$PSTMSAVEPAR");
//Reset the device so that the changes could take plaace
sendCommand((char *)"$PSTMSRR");
delay(4000);
//Reinitialize I2C after the reset
gps.begin();
//clear i2c buffer
char c;
idx = 0;
memset(buff, 0, 32);
do
{
if (idx == 0)
{
readI2C(buff);
delay(I2C_DELAY);
}
c = buff[idx];
idx++;
idx %= 32;
}
while ((uint8_t) c != 0xFF);
pinMode(2, INPUT);
attachInterrupt(digitalPinToInterrupt(2), ppsHandler, RISING);
// End GPS Setup
SPI.setMOSI(RADIO_MOSI_PORT);
SPI.setMISO(RADIO_MISO_PORT);
SPI.setSCLK(RADIO_SCLK_PORT);
SPI.setSSEL(RADIO_NSS_PORT);
// LMIC init
os_init();
// Reset the MAC state. Session and pending data transfers will be discarded.
LMIC_reset();
// allow much more clock error than the X/1000 default. See:
// https://github.com/mcci-catena/arduino-lorawan/issues/74#issuecomment-462171974
// https://github.com/mcci-catena/arduino-lmic/commit/42da75b56#diff-16d75524a9920f5d043fe731a27cf85aL633
// the X/1000 means an error rate of 0.1%; the above issue discusses using
// values up to 10%. so, values from 10 (10% error, the most lax) to 1000
// (0.1% error, the most strict) can be used.
LMIC_setClockError(1 * MAX_CLOCK_ERROR / 40);
LMIC_setLinkCheckMode(0);
LMIC_setDrTxpow(DR_SF8, 20);
// Sub-band 2 - Helium Network
LMIC_selectSubBand(1); // zero indexed
// Start job (sending automatically starts OTAA too)
do_send(&sendjob);
}
void loop() {
os_runloop_once();
readGPS();
}
namespace Arduino_LMIC {
class HalConfiguration_Disco_L072cz_Lrwan1_t : public HalConfiguration_t {
public:
enum DIGITAL_PINS : uint8_t {
PIN_SX1276_NSS = 37,
PIN_SX1276_NRESET = 33,
PIN_SX1276_DIO0 = 38,
PIN_SX1276_DIO1 = 39,
PIN_SX1276_DIO2 = 40,
PIN_SX1276_RXTX = 21,
};
virtual bool queryUsingTcxo(void) override { return false; };
};
// save some typing by bringing the pin numbers into scope
static HalConfiguration_Disco_L072cz_Lrwan1_t myConfig;
static const HalPinmap_t myPinmap = {
.nss = HalConfiguration_Disco_L072cz_Lrwan1_t::PIN_SX1276_NSS,
.rxtx = HalConfiguration_Disco_L072cz_Lrwan1_t::PIN_SX1276_RXTX,
.rst = HalConfiguration_Disco_L072cz_Lrwan1_t::PIN_SX1276_NRESET,
.dio =
{
HalConfiguration_Disco_L072cz_Lrwan1_t::PIN_SX1276_DIO0,
HalConfiguration_Disco_L072cz_Lrwan1_t::PIN_SX1276_DIO1,
HalConfiguration_Disco_L072cz_Lrwan1_t::PIN_SX1276_DIO2,
},
.rxtx_rx_active = 1,
.rssi_cal = 10,
.spi_freq = 8000000, /* 8MHz */
.pConfig = &myConfig};
}; // end namespace Arduino_LMIC