libdspl-2.0/dspl/blas/src/crotg.f90

230 wiersze
5.4 KiB
Fortran

!> \brief \b CROTG
!
! =========== DOCUMENTATION ===========
!
! Online html documentation available at
! http://www.netlib.org/lapack/explore-html/
!
! Definition:
! ===========
!
! CROTG constructs a plane rotation
! [ c s ] [ a ] = [ r ]
! [ -conjg(s) c ] [ b ] [ 0 ]
! where c is real, s ic complex, and c**2 + conjg(s)*s = 1.
!
!> \par Purpose:
! =============
!>
!> \verbatim
!>
!> The computation uses the formulas
!> |x| = sqrt( Re(x)**2 + Im(x)**2 )
!> sgn(x) = x / |x| if x /= 0
!> = 1 if x = 0
!> c = |a| / sqrt(|a|**2 + |b|**2)
!> s = sgn(a) * conjg(b) / sqrt(|a|**2 + |b|**2)
!> When a and b are real and r /= 0, the formulas simplify to
!> r = sgn(a)*sqrt(|a|**2 + |b|**2)
!> c = a / r
!> s = b / r
!> the same as in CROTG when |a| > |b|. When |b| >= |a|, the
!> sign of c and s will be different from those computed by CROTG
!> if the signs of a and b are not the same.
!>
!> \endverbatim
!
! Arguments:
! ==========
!
!> \param[in,out] A
!> \verbatim
!> A is COMPLEX
!> On entry, the scalar a.
!> On exit, the scalar r.
!> \endverbatim
!>
!> \param[in] B
!> \verbatim
!> B is COMPLEX
!> The scalar b.
!> \endverbatim
!>
!> \param[out] C
!> \verbatim
!> C is REAL
!> The scalar c.
!> \endverbatim
!>
!> \param[out] S
!> \verbatim
!> S is REAL
!> The scalar s.
!> \endverbatim
!
! Authors:
! ========
!
!> \author Edward Anderson, Lockheed Martin
!
!> \par Contributors:
! ==================
!>
!> Weslley Pereira, University of Colorado Denver, USA
!
!> \ingroup single_blas_level1
!
!> \par Further Details:
! =====================
!>
!> \verbatim
!>
!> Anderson E. (2017)
!> Algorithm 978: Safe Scaling in the Level 1 BLAS
!> ACM Trans Math Softw 44:1--28
!> https://doi.org/10.1145/3061665
!>
!> \endverbatim
!
! =====================================================================
subroutine CROTG( a, b, c, s )
integer, parameter :: wp = kind(1.e0)
!
! -- Reference BLAS level1 routine --
! -- Reference BLAS is a software package provided by Univ. of Tennessee, --
! -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
!
! .. Constants ..
real(wp), parameter :: zero = 0.0_wp
real(wp), parameter :: one = 1.0_wp
complex(wp), parameter :: czero = 0.0_wp
! ..
! .. Scaling constants ..
real(wp), parameter :: safmin = real(radix(0._wp),wp)**max( &
minexponent(0._wp)-1, &
1-maxexponent(0._wp) &
)
real(wp), parameter :: safmax = real(radix(0._wp),wp)**max( &
1-minexponent(0._wp), &
maxexponent(0._wp)-1 &
)
real(wp), parameter :: rtmin = sqrt( real(radix(0._wp),wp)**max( &
minexponent(0._wp)-1, &
1-maxexponent(0._wp) &
) / epsilon(0._wp) )
real(wp), parameter :: rtmax = sqrt( real(radix(0._wp),wp)**max( &
1-minexponent(0._wp), &
maxexponent(0._wp)-1 &
) * epsilon(0._wp) )
! ..
! .. Scalar Arguments ..
real(wp) :: c
complex(wp) :: a, b, s
! ..
! .. Local Scalars ..
real(wp) :: d, f1, f2, g1, g2, h2, p, u, uu, v, vv, w
complex(wp) :: f, fs, g, gs, r, t
! ..
! .. Intrinsic Functions ..
intrinsic :: abs, aimag, conjg, max, min, real, sqrt
! ..
! .. Statement Functions ..
real(wp) :: ABSSQ
! ..
! .. Statement Function definitions ..
ABSSQ( t ) = real( t )**2 + aimag( t )**2
! ..
! .. Executable Statements ..
!
f = a
g = b
if( g == czero ) then
c = one
s = czero
r = f
else if( f == czero ) then
c = zero
g1 = max( abs(real(g)), abs(aimag(g)) )
if( g1 > rtmin .and. g1 < rtmax ) then
!
! Use unscaled algorithm
!
g2 = ABSSQ( g )
d = sqrt( g2 )
s = conjg( g ) / d
r = d
else
!
! Use scaled algorithm
!
u = min( safmax, max( safmin, g1 ) )
uu = one / u
gs = g*uu
g2 = ABSSQ( gs )
d = sqrt( g2 )
s = conjg( gs ) / d
r = d*u
end if
else
f1 = max( abs(real(f)), abs(aimag(f)) )
g1 = max( abs(real(g)), abs(aimag(g)) )
if( f1 > rtmin .and. f1 < rtmax .and. &
g1 > rtmin .and. g1 < rtmax ) then
!
! Use unscaled algorithm
!
f2 = ABSSQ( f )
g2 = ABSSQ( g )
h2 = f2 + g2
if( f2 > rtmin .and. h2 < rtmax ) then
d = sqrt( f2*h2 )
else
d = sqrt( f2 )*sqrt( h2 )
end if
p = 1 / d
c = f2*p
s = conjg( g )*( f*p )
r = f*( h2*p )
else
!
! Use scaled algorithm
!
u = min( safmax, max( safmin, f1, g1 ) )
uu = one / u
gs = g*uu
g2 = ABSSQ( gs )
if( f1*uu < rtmin ) then
!
! f is not well-scaled when scaled by g1.
! Use a different scaling for f.
!
v = min( safmax, max( safmin, f1 ) )
vv = one / v
w = v * uu
fs = f*vv
f2 = ABSSQ( fs )
h2 = f2*w**2 + g2
else
!
! Otherwise use the same scaling for f and g.
!
w = one
fs = f*uu
f2 = ABSSQ( fs )
h2 = f2 + g2
end if
if( f2 > rtmin .and. h2 < rtmax ) then
d = sqrt( f2*h2 )
else
d = sqrt( f2 )*sqrt( h2 )
end if
p = 1 / d
c = ( f2*p )*w
s = conjg( gs )*( fs*p )
r = ( fs*( h2*p ) )*u
end if
end if
a = r
return
end subroutine