kgoba-ft8_lib/ft8/decode.c

370 wiersze
12 KiB
C

#include "decode.h"
#include "constants.h"
#include "crc.h"
#include "ldpc.h"
#include "unpack.h"
#include <stdbool.h>
#include <math.h>
/// Compute log likelihood log(p(1) / p(0)) of 174 message bits for later use in soft-decision LDPC decoding
/// @param[in] power Waterfall data collected during message slot
/// @param[in] cand Candidate to extract the message from
/// @param[in] code_map Symbol encoding map
/// @param[out] log174 Output of decoded log likelihoods for each of the 174 message bits
static void extract_likelihood(const waterfall_t *power, const candidate_t *cand, float *log174);
static float max2(float a, float b);
static float max4(float a, float b, float c, float d);
static void heapify_down(candidate_t heap[], int heap_size);
static void heapify_up(candidate_t heap[], int heap_size);
static void decode_symbol(const uint8_t *power, int bit_idx, float *log174);
static void decode_multi_symbols(const uint8_t *power, int num_bins, int n_syms, int bit_idx, float *log174);
static int get_index(const waterfall_t *power, int block, int time_sub, int freq_sub, int bin)
{
return ((((block * power->time_osr) + time_sub) * power->freq_osr + freq_sub) * power->num_bins) + bin;
}
int find_sync(const waterfall_t *power, int num_candidates, candidate_t heap[], int min_score)
{
int heap_size = 0;
int sym_stride = power->time_osr * power->freq_osr * power->num_bins;
// Here we allow time offsets that exceed signal boundaries, as long as we still have all data bits.
// I.e. we can afford to skip the first 7 or the last 7 Costas symbols, as long as we track how many
// sync symbols we included in the score, so the score is averaged.
for (int time_sub = 0; time_sub < power->time_osr; ++time_sub)
{
for (int freq_sub = 0; freq_sub < power->freq_osr; ++freq_sub)
{
for (int time_offset = -12; time_offset < 24; ++time_offset)
{
for (int freq_offset = 0; freq_offset + 7 < power->num_bins; ++freq_offset)
{
int score = 0;
int num_average = 0;
// Compute average score over sync symbols (m+k = 0-7, 36-43, 72-79)
for (int m = 0; m <= 72; m += 36)
{
for (int k = 0; k < 7; ++k)
{
int block = time_offset + m + k;
// Check for time boundaries
if (block < 0)
continue;
if (block >= power->num_blocks)
break;
int offset = get_index(power, block, time_sub, freq_sub, freq_offset);
const uint8_t *p8 = power->mag + offset;
// Weighted difference between the expected and all other symbols
// Does not work as well as the alternative score below
// score += 8 * p8[kFT8_Costas_pattern[k]] -
// p8[0] - p8[1] - p8[2] - p8[3] -
// p8[4] - p8[5] - p8[6] - p8[7];
// ++num_average;
// Check only the neighbors of the expected symbol frequency- and time-wise
int sm = kFT8_Costas_pattern[k]; // Index of the expected bin
if (sm > 0)
{
// look at one frequency bin lower
score += p8[sm] - p8[sm - 1];
++num_average;
}
if (sm < 7)
{
// look at one frequency bin higher
score += p8[sm] - p8[sm + 1];
++num_average;
}
if ((k > 0) && (block > 0))
{
// look one symbol back in time
score += p8[sm] - p8[sm - sym_stride];
++num_average;
}
if ((k < 6) && ((block + 1) < power->num_blocks))
{
// look one symbol forward in time
score += p8[sm] - p8[sm + sym_stride];
++num_average;
}
}
}
if (num_average > 0)
score /= num_average;
if (score < min_score)
continue;
// If the heap is full AND the current candidate is better than
// the worst in the heap, we remove the worst and make space
if (heap_size == num_candidates && score > heap[0].score)
{
heap[0] = heap[heap_size - 1];
--heap_size;
heapify_down(heap, heap_size);
}
// If there's free space in the heap, we add the current candidate
if (heap_size < num_candidates)
{
heap[heap_size].score = score;
heap[heap_size].time_offset = time_offset;
heap[heap_size].freq_offset = freq_offset;
heap[heap_size].time_sub = time_sub;
heap[heap_size].freq_sub = freq_sub;
++heap_size;
heapify_up(heap, heap_size);
}
}
}
}
}
// Sort the candidates by sync strength - here we benefit from the heap structure
int len_unsorted = heap_size;
while (len_unsorted > 1)
{
candidate_t tmp = heap[len_unsorted - 1];
heap[len_unsorted - 1] = heap[0];
heap[0] = tmp;
len_unsorted--;
heapify_down(heap, len_unsorted);
}
return heap_size;
}
void extract_likelihood(const waterfall_t *power, const candidate_t *cand, float *log174)
{
int sym_stride = power->time_osr * power->freq_osr * power->num_bins;
int offset = get_index(power, cand->time_offset, cand->time_sub, cand->freq_sub, cand->freq_offset);
// Go over FSK tones and skip Costas sync symbols
const int n_syms = 1;
const int n_bits = 3 * n_syms;
const int n_tones = (1 << n_bits);
for (int k = 0; k < FT8_ND; k += n_syms)
{
// Add either 7 or 14 extra symbols to account for sync
int sym_idx = (k < FT8_ND / 2) ? (k + 7) : (k + 14);
int bit_idx = 3 * k;
int block = cand->time_offset + sym_idx;
// Check for time boundaries
if ((block < 0) || (block >= power->num_blocks))
{
log174[bit_idx] = 0;
}
else
{
// Pointer to 8 bins of the current symbol
const uint8_t *ps = power->mag + offset + (sym_idx * sym_stride);
decode_symbol(ps, bit_idx, log174);
}
}
// Compute the variance of log174
float sum = 0;
float sum2 = 0;
for (int i = 0; i < FT8_LDPC_N; ++i)
{
sum += log174[i];
sum2 += log174[i] * log174[i];
}
float inv_n = 1.0f / FT8_LDPC_N;
float variance = (sum2 - (sum * sum * inv_n)) * inv_n;
// Normalize log174 distribution and scale it with experimentally found coefficient
float norm_factor = sqrtf(24.0f / variance);
for (int i = 0; i < FT8_LDPC_N; ++i)
{
log174[i] *= norm_factor;
}
}
bool decode(const waterfall_t *power, const candidate_t *cand, message_t *message, int max_iterations, decode_status_t *status)
{
float log174[FT8_LDPC_N]; // message bits encoded as likelihood
extract_likelihood(power, cand, log174);
uint8_t plain174[FT8_LDPC_N]; // message bits (0/1)
bp_decode(log174, max_iterations, plain174, &status->ldpc_errors);
// ldpc_decode(log174, max_iterations, plain174, &status->ldpc_errors);
if (status->ldpc_errors > 0)
{
return false;
}
// Extract payload + CRC (first FT8_LDPC_K bits) packed into a byte array
uint8_t a91[FT8_LDPC_K_BYTES];
pack_bits(plain174, FT8_LDPC_K, a91);
// Extract CRC and check it
status->crc_extracted = extract_crc(a91);
// [1]: 'The CRC is calculated on the source-encoded message, zero-extended from 77 to 82 bits.'
a91[9] &= 0xF8;
a91[10] &= 0x00;
status->crc_calculated = ft8_crc(a91, 96 - 14);
if (status->crc_extracted != status->crc_calculated)
{
return false;
}
status->unpack_status = unpack77(a91, message->text);
if (status->unpack_status < 0)
{
return false;
}
// Reuse binary message CRC as hash value for the message
message->hash = status->crc_extracted;
return true;
}
static float max2(float a, float b)
{
return (a >= b) ? a : b;
}
static float max4(float a, float b, float c, float d)
{
return max2(max2(a, b), max2(c, d));
}
static void heapify_down(candidate_t heap[], int heap_size)
{
// heapify from the root down
int current = 0;
while (true)
{
int largest = current;
int left = 2 * current + 1;
int right = left + 1;
if (left < heap_size && heap[left].score < heap[largest].score)
{
largest = left;
}
if (right < heap_size && heap[right].score < heap[largest].score)
{
largest = right;
}
if (largest == current)
{
break;
}
candidate_t tmp = heap[largest];
heap[largest] = heap[current];
heap[current] = tmp;
current = largest;
}
}
static void heapify_up(candidate_t heap[], int heap_size)
{
// heapify from the last node up
int current = heap_size - 1;
while (current > 0)
{
int parent = (current - 1) / 2;
if (heap[current].score >= heap[parent].score)
{
break;
}
candidate_t tmp = heap[parent];
heap[parent] = heap[current];
heap[current] = tmp;
current = parent;
}
}
// Compute unnormalized log likelihood log(p(1) / p(0)) of 3 message bits (1 FSK symbol)
static void decode_symbol(const uint8_t *power, int bit_idx, float *log174)
{
// Cleaned up code for the simple case of n_syms==1
float s2[8];
for (int j = 0; j < 8; ++j)
{
s2[j] = (float)power[kFT8_Gray_map[j]];
}
log174[bit_idx + 0] = max4(s2[4], s2[5], s2[6], s2[7]) - max4(s2[0], s2[1], s2[2], s2[3]);
log174[bit_idx + 1] = max4(s2[2], s2[3], s2[6], s2[7]) - max4(s2[0], s2[1], s2[4], s2[5]);
log174[bit_idx + 2] = max4(s2[1], s2[3], s2[5], s2[7]) - max4(s2[0], s2[2], s2[4], s2[6]);
}
// Compute unnormalized log likelihood log(p(1) / p(0)) of bits corresponding to several FSK symbols at once
static void decode_multi_symbols(const uint8_t *power, int num_bins, int n_syms, int bit_idx, float *log174)
{
const int n_bits = 3 * n_syms;
const int n_tones = (1 << n_bits);
float s2[n_tones];
for (int j = 0; j < n_tones; ++j)
{
int j1 = j & 0x07;
if (n_syms == 1)
{
s2[j] = (float)power[kFT8_Gray_map[j1]];
continue;
}
int j2 = (j >> 3) & 0x07;
if (n_syms == 2)
{
s2[j] = (float)power[kFT8_Gray_map[j2]];
s2[j] += (float)power[kFT8_Gray_map[j1] + 4 * num_bins];
continue;
}
int j3 = (j >> 6) & 0x07;
s2[j] = (float)power[kFT8_Gray_map[j3]];
s2[j] += (float)power[kFT8_Gray_map[j2] + 4 * num_bins];
s2[j] += (float)power[kFT8_Gray_map[j1] + 8 * num_bins];
}
// Extract bit significance (and convert them to float)
// 8 FSK tones = 3 bits
for (int i = 0; i < n_bits; ++i)
{
if (bit_idx + i >= FT8_LDPC_N)
{
// Respect array size
break;
}
uint16_t mask = (n_tones >> (i + 1));
float max_zero = -1000, max_one = -1000;
for (int n = 0; n < n_tones; ++n)
{
if (n & mask)
{
max_one = max2(max_one, s2[n]);
}
else
{
max_zero = max2(max_zero, s2[n]);
}
}
log174[bit_idx + i] = max_one - max_zero;
}
}