kgoba-ft8_lib/decode_ft8.c

307 wiersze
9.3 KiB
C

#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <math.h>
#include <stdbool.h>
#include "ft8/unpack.h"
#include "ft8/ldpc.h"
#include "ft8/decode.h"
#include "ft8/constants.h"
#include "ft8/encode.h"
#include "ft8/crc.h"
#include "common/wave.h"
#include "common/debug.h"
#include "fft/kiss_fftr.h"
#define LOG_LEVEL LOG_INFO
const int kMin_score = 40; // Minimum sync score threshold for candidates
const int kMax_candidates = 120;
const int kLDPC_iterations = 25;
const int kMax_decoded_messages = 50;
const int kFreq_osr = 2;
const int kTime_osr = 2;
const float kFSK_dev = 6.25f; // tone deviation in Hz and symbol rate
void usage()
{
fprintf(stderr, "Decode a 15-second WAV file.\n");
}
float hann_i(int i, int N)
{
float x = sinf((float)M_PI * i / (N - 1));
return x * x;
}
float hamming_i(int i, int N)
{
const float a0 = (float)25 / 46;
const float a1 = 1 - a0;
float x1 = cosf(2 * (float)M_PI * i / (N - 1));
return a0 - a1 * x1;
}
float blackman_i(int i, int N)
{
const float alpha = 0.16f; // or 2860/18608
const float a0 = (1 - alpha) / 2;
const float a1 = 1.0f / 2;
const float a2 = alpha / 2;
float x1 = cosf(2 * (float)M_PI * i / (N - 1));
//float x2 = cosf(4 * (float)M_PI * i / (N - 1));
float x2 = 2 * x1 * x1 - 1; // Use double angle formula
return a0 - a1 * x1 + a2 * x2;
}
static float max2(float a, float b)
{
return (a >= b) ? a : b;
}
// Compute FFT magnitudes (log power) for each timeslot in the signal
void extract_power(const float signal[], waterfall_t *power)
{
const int block_size = 2 * power->num_bins; // Average over 2 bins per FSK tone
const int subblock_size = block_size / power->time_osr;
const int nfft = block_size * power->freq_osr; // We take FFT of two blocks, advancing by one
const float fft_norm = 2.0f / nfft;
float window[nfft];
for (int i = 0; i < nfft; ++i)
{
window[i] = hann_i(i, nfft);
// window[i] = (i < block_size) ? hamming_i(i, block_size) : 0;
// window[i] = blackman_i(i, nfft);
// window[i] = hamming_i(i, nfft);
}
size_t fft_work_size;
kiss_fftr_alloc(nfft, 0, 0, &fft_work_size);
LOG(LOG_INFO, "Block size = %d\n", block_size);
LOG(LOG_INFO, "Subblock size = %d\n", subblock_size);
LOG(LOG_INFO, "N_FFT = %d\n", nfft);
LOG(LOG_INFO, "FFT work area = %lu\n", fft_work_size);
void *fft_work = malloc(fft_work_size);
kiss_fftr_cfg fft_cfg = kiss_fftr_alloc(nfft, 0, fft_work, &fft_work_size);
int offset = 0;
float max_mag = -100.0f;
for (int idx_block = 0; idx_block < power->num_blocks; ++idx_block)
{
// Loop over two possible time offsets (0 and block_size/2)
for (int time_sub = 0; time_sub < power->time_osr; ++time_sub)
{
kiss_fft_scalar timedata[nfft];
kiss_fft_cpx freqdata[nfft / 2 + 1];
float mag_db[nfft / 2 + 1];
// Extract windowed signal block
for (int pos = 0; pos < nfft; ++pos)
{
timedata[pos] = window[pos] * signal[(idx_block * block_size) + (pos + time_sub * subblock_size)];
}
kiss_fftr(fft_cfg, timedata, freqdata);
// Compute log magnitude in decibels
for (int idx_bin = 0; idx_bin < nfft / 2 + 1; ++idx_bin)
{
float mag2 = (freqdata[idx_bin].i * freqdata[idx_bin].i) + (freqdata[idx_bin].r * freqdata[idx_bin].r);
mag_db[idx_bin] = 10.0f * log10f(1E-10f + mag2 * fft_norm * fft_norm);
}
// Loop over two possible frequency bin offsets (for averaging)
for (int freq_sub = 0; freq_sub < power->freq_osr; ++freq_sub)
{
for (int pos = 0; pos < power->num_bins; ++pos)
{
float db = mag_db[pos * power->freq_osr + freq_sub];
// Scale decibels to unsigned 8-bit range and clamp the value
int scaled = (int)(2 * (db + 120));
power->mag[offset] = (scaled < 0) ? 0 : ((scaled > 255) ? 255 : scaled);
++offset;
if (db > max_mag)
max_mag = db;
}
}
}
}
LOG(LOG_INFO, "Max magnitude: %.1f dB\n", max_mag);
free(fft_work);
}
void normalize_signal(float *signal, int num_samples)
{
float max_amp = 1E-5f;
for (int i = 0; i < num_samples; ++i)
{
float amp = fabsf(signal[i]);
if (amp > max_amp)
{
max_amp = amp;
}
}
for (int i = 0; i < num_samples; ++i)
{
signal[i] /= max_amp;
}
}
void print_tones(const uint8_t *code_map, const float *log174)
{
for (int k = 0; k < FT8_N; k += 3)
{
uint8_t max = 0;
if (log174[k + 0] > 0)
max |= 4;
if (log174[k + 1] > 0)
max |= 2;
if (log174[k + 2] > 0)
max |= 1;
LOG(LOG_DEBUG, "%d", code_map[max]);
}
LOG(LOG_DEBUG, "\n");
}
int main(int argc, char **argv)
{
// Expect one command-line argument
if (argc < 2)
{
usage();
return -1;
}
const char *wav_path = argv[1];
int sample_rate = 12000;
int num_samples = 15 * sample_rate;
float signal[num_samples];
int rc = load_wav(signal, &num_samples, &sample_rate, wav_path);
if (rc < 0)
{
return -1;
}
normalize_signal(signal, num_samples);
// Compute DSP parameters that depend on the sample rate
const int num_bins = (int)(sample_rate / (2 * kFSK_dev));
const int block_size = 2 * num_bins;
const int subblock_size = block_size / kTime_osr;
const int nfft = block_size * kFreq_osr;
const int num_blocks = (num_samples - nfft + subblock_size) / block_size;
LOG(LOG_INFO, "Sample rate %d Hz, %d blocks, %d bins\n", sample_rate, num_blocks, num_bins);
// Compute FFT over the whole signal and store it
uint8_t mag_power[num_blocks * kFreq_osr * kTime_osr * num_bins];
waterfall_t power = {
.num_blocks = num_blocks,
.num_bins = num_bins,
.time_osr = kTime_osr,
.freq_osr = kFreq_osr,
.mag = mag_power};
extract_power(signal, &power);
// Find top candidates by Costas sync score and localize them in time and frequency
candidate_t candidate_list[kMax_candidates];
int num_candidates = find_sync(&power, kMax_candidates, candidate_list, kMin_score);
// TODO: sort the candidates by strongest sync first?
// Hash table for decoded messages (to check for duplicates)
int num_decoded = 0;
message_t decoded[kMax_decoded_messages];
message_t *decoded_hashtable[kMax_decoded_messages];
// Initialize hash table pointers
for (int i = 0; i < kMax_decoded_messages; ++i)
{
decoded_hashtable[i] = NULL;
}
// Go over candidates and attempt to decode messages
for (int idx = 0; idx < num_candidates; ++idx)
{
const candidate_t *cand = &candidate_list[idx];
if (cand->score < kMin_score)
continue;
float freq_hz = (cand->freq_offset + (float)cand->freq_sub / kFreq_osr) * kFSK_dev;
float time_sec = (cand->time_offset + (float)cand->time_sub / kTime_osr) / kFSK_dev;
message_t message;
decode_status_t status;
if (!decode(&power, cand, &message, kLDPC_iterations, &status))
{
if (status.ldpc_errors > 0)
{
LOG(LOG_DEBUG, "LDPC decode: %d errors\n", status.ldpc_errors);
}
else if (status.crc_calculated != status.crc_extracted)
{
LOG(LOG_DEBUG, "CRC mismatch!\n");
}
else if (status.unpack_status != 0)
{
LOG(LOG_DEBUG, "Error while unpacking!\n");
}
continue;
}
LOG(LOG_DEBUG, "Checking hash table for %4.1fs / %4.1fHz [%d]...\n", time_sec, freq_hz, cand->score);
int hash_idx = message.hash % kMax_decoded_messages;
bool found_empty_slot = false;
bool found_duplicate = false;
do
{
if (decoded_hashtable[hash_idx] == NULL)
{
LOG(LOG_DEBUG, "Found an empty slot\n");
found_empty_slot = true;
}
else if ((decoded_hashtable[hash_idx]->hash == message.hash) && (0 == strcmp(decoded_hashtable[hash_idx]->text, message.text)))
{
LOG(LOG_DEBUG, "Found a duplicate [%s]\n", message.text);
found_duplicate = true;
}
else
{
LOG(LOG_DEBUG, "Hash table clash!\n");
// Move on to check the next entry in hash table
hash_idx = (hash_idx + 1) % kMax_decoded_messages;
}
} while (!found_empty_slot && !found_duplicate);
if (found_empty_slot)
{
// Fill the empty hashtable slot
memcpy(&decoded[hash_idx], &message, sizeof(message));
decoded_hashtable[hash_idx] = &decoded[hash_idx];
++num_decoded;
// Fake WSJT-X-like output for now
int snr = 0; // TODO: compute SNR
printf("000000 %3d %4.1f %4d ~ %s\n", cand->score, time_sec, (int)(freq_hz + 0.5f), message.text);
}
}
LOG(LOG_INFO, "Decoded %d messages\n", num_decoded);
return 0;
}